感谢您在茫茫网海进入到我们的网站,今天有幸能与您分享关于整式第一课时课件(整式的加减第一课时优质课)的有关知识,本文内容较多,还望您能耐心阅读,我们的知识点均来自于互联网的收集整理,不一定完全准确,希望您谨慎辨别信息的真实性,我们就开始介绍整式第一课时课件(整式的加减第一课时优质课)的相关知识点。

整式是初中代数学中的一个重要概念,也是数学学习的基础。在整式的加减运算中,我们需要掌握一些基本的规则和方法。在这节课上,我们将学习整式的加减法。

整式第一课时课件(整式的加减第一课时优质课)

我们来回顾一下整式的定义。整式是由变量、常数和运算符号(加号或减号)组成的代数表达式。2x+3y-5z就是一个整式。在整式中,每个项都是由一个系数和一个字母乘积构成的。在进行整式的加减运算时,我们只需要对相同的字母乘积进行加减即可。

我们来看一些例子。假设有两个整式:3x+2y-4z和2x-3y+5z。我们要计算这两个整式的和。按照整式的加法规则,我们只需要对相同的字母乘积进行加法运算,然后将其他项保持不变。计算过程如下:

(3x+2y-4z)+(2x-3y+5z)=3x+2x+2y-3y-4z+5z=5x-y+z。

同样的方法,我们可以计算这两个整式的差。计算过程如下:

(3x+2y-4z)-(2x-3y+5z)=3x-2x+2y+3y-4z-5z=x+5y-9z。

通过这些例子,我们可以看出,在整式的加减中,我们只需要对相同字母乘积进行加减,然后将其他项保持不变。我们就可以得到整式的和差。

在整式的加减中,我们还需要注意一些细节。当两个整式相加时,如果两个整式中有相同的字母乘积,我们可以直接对系数进行加减运算。如果没有相同的字母乘积,我们不能进行加减运算,只能将它们保持不变。整式的加减运算遵循交换律和结合律。也就是说,我们可以改变整式中项的次序,或者将整式进行拆分,然后再进行加减运算。

整式的加减是初中代数学中的一个重要概念。通过学习这节课,我们掌握了整式的加减法的基本规则和方法。在以后的学习中,我们还将学习整式的乘法和除法。整式不仅在数学中有着广泛的应用,而且在日常生活中也有着实际的意义。掌握整式的加减运算,将有助于我们更好地理解和应用代数学知识。

整式第一课时课件(整式的加减第一课时优质课)

【 #课件# 导语】课件是教学一篇课文的开场白,是教师在新课的开始阶段,从一定的目的出发,用很短的时间,并采取一定的方法或手段,激发学生学习新课的心理情绪的重要教学环节。下面是 的后续更新吧!1.初中数学优秀课件 一、教材分析 本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。 二、设计思想 本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。 八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学 运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。 三、教学目标: (一)知识技能目标: 1、理解同类项的含义,并能辨别同类项。 2、掌握合并同类项的方法,熟练的合并同类项。 3、掌握整式加减运算的方法,熟练进行运算。 (二)过程方法目标: 1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。 2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。 3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。 (三)情感价值目标: 1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。 2、通过学习活动培养学生科学、严谨的学习态度。 四、教学重、难点: 合并同类项 五、教学关键: 同类项的概念 六、教学准备: 教师: 1、筛选数学题目,精心设置问题情境。 2、制作大小不等的两个长方体纸盒实物模型,并能展开。 3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。) 学生: 1、复习有关单项式的概念、有理数四则运算及去括号的法则) 2、每小组制作大小不等的两个长方体纸盒模型。 2.初中数学优秀课件 一、教材分析 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。 (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。 二、教法与学法分析: 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 1、创设情境,提出问题 2、实验操作,模型构建 3、回归生活,应用新知 4、知识拓展,巩固深化 5。感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。 (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 (二)实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。 (三)回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 四、知识拓展巩固深化 基础题,情境题,探索题。 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。 基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 五、感悟收获布置作业: 这节课你的收获是什么? 作业: 1、课本习题 2、搜集有关勾股定理证明的资料。 3.初中数学优秀课件 一、教材分析 本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。 二、教学目标 1、知识目标:了解多边形内角和公式。 2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。 3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。 4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。 三、教学重、难点 重点:探索多边形内角和。 难点:探索多边形内角和时,如何把多边形转化成三角形。 四、教学方法:引导发现法、讨论法 五、教具、学具 教具:多媒体课件 学具:三角板、量角器 六、教学媒体:大屏幕、实物投影 七、教学过程: (一)创设情境,设疑激思 师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗? 活动一:探究四边形内角和。 在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。 方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。 方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。 教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。 师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。 学生先独立思考每个问题再分组讨论。 关注: (1)学生能否类比四边形的方式解决问题得出正确的结论。 (2)学生能否采用不同的方法。 学生分组讨论后进行交流(五边形的内角和) 方法1:把五边形分成三个三角形,3个180的和是540。 方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。 方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。 方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。 师:你真聪明!做到了学以致用。 交流后,学生运用几何画板演示并验证得到的方法。 得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。 (二)引申思考,培养创新 师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。 思考: (1)多边形内角和与三角形内角和的关系? (2)多边形的边数与内角和的关系? (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系? 学生结合思考题进行讨论,并把讨论后的结果进行交流。 发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。 发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。 得出多边形内角和公式:(n-2)·180。 (三)实际应用,优势互补 1、口答:(1)七边形内角和() (2)九边形内角和() (3)十边形内角和() 2、抢答:(1)一个多边形的内角和等于1260,它是几边形? (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。 3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度? (四)概括存储 学生自己归纳 1、多边形内角和公式 2、运用转化思想解决数学问题 3、用数形结合的思想解决问题 (五)作业:练习册第93页1、2、3 4.初中数学优秀课件 教学目标: 1、初步体会从不同方向观察同一物体可能看到不同的图形; 2、能识别简单物体的三视图,体会物体三视图的合理性; 3、会画立方体及其简单组合的三视图; 过程与方法: 1、在“观察”的活动过程中,积累数学活动经验,发展空间观念; 2、能在与他人交流的过程中,合理清晰地表达自己的思维过程; 3、渗透多侧面观察分析的思维方法; 情感与态度: 通过系列学生感兴趣的活动,形成学习数学的积极情感,激发对空间与图形学习的好奇心,逐渐形成与他人合作交流的意识。 教学重、难点: 重点:体会从不同方向看同一物体可能看到不同的结果。 难点:能画立方体及简单组合的三视图。 教法学法: ①发现式教学法 ②动手实践与思考相结合法 教学过程设计: 一、创设情境,引入新课 1、看录像; 2、从学生熟悉的古诗入手,观察庐山; 3、房屋的房型图。 二、观察体验、探索结论 活动1:观察一组图片,找出结论。 活动2:观察图片,注意这些图片的拍摄角度,你能挑出一组三视图的图片吗? 活动3:猜猜看:通过从不同角度拍摄的图片来猜测实物是什么? 活动4:观察下图 如果分别从正面、左面、上面看着三个几何体,分别得到什么平面图形? 三、学画简单几何体的三视图 给出由4个小正方体形成的组合图形,从正面、左面、上面观察并画出相应的平面图形。 做一做:以小组为单位,用6个小立方体块搭出不同的几何体,然后根据搭建的几何体画出从正面、左面、上面观察得到的平面图形,并在小组内交流验证,看谁画的图最标准、而后,全班同学根据某小组画的三视图来组合立体图形。 四、小结与反思: 1、本节课研究的主要内容是什么? 2、本节课数学知识对平时的学习生活有何作用? 五、练习与作业: 能力作业:画出我校教学楼的三视图(以面向南为“从正面看”),或者画出你家的房屋(或设计)的平面图。 5.初中数学优秀课件 一、教学目的: 1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算; 2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。 二、重点、难点 1.教学重点:菱形的两个判定方法。 2.教学难点:判定方法的证明方法及运用。 三、例题的意图分析 本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3. 四、课堂引入 1.复习 (1)菱形的定义:一组邻边相等的平行四边形; (2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角; (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件) 2.问题 要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗? 3.探究 (教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 通过演示,容易得到: 菱形判定方法1对角线互相垂直的平行四边形是菱形。 注意此方法包括两个条件: (1)是一个平行四边形。 (2)两条对角线互相垂直。

整式的加减第一课时优质课

【 #课件# 导语】课件是教师课堂教学过程中的重要依据,是教学活动正常开展的重要保障。课件,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,由于学科和教材的性质﹑教学目的和课的类型不同,课件不必有固定的形式。下面是 考 网整理分享的初中数学《完全平方公式》优质课件,欢迎阅读与借鉴,希望对你们有帮助!初中数学《完全平方公式》优质课件篇一 课题名称:完全平方公式(1) 一、内容简介 本节课的通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。 关键信息: 1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。 2、用标准的数学语言得出使学生感受科学的严谨,启迪学习态度和方法。 二、学习者分析: 1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。 ②合并同类项法则 ③多项式乘以多项式法则。 2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。 三、教学/学习目标及其对应的课程标准: (一)教学目标: 1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。 2、会推导完全平方公式,并能运用公式进行简单的计算。 (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理 数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。 (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同 角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。 (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难 和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。 四、教育理念和教学方式: 1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。 教学是师生交往、积极互动、共同发展的过程。当学生迷路的时 候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。 2、采用“问题情景—探究交流—得出结论—强化训练”的模式 展开教学。 3、教学评价方式: (1)通过课堂观察,关注学生在观察、总结、训练等活动中的主 动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。 (2)通过判断和举例,给学生更多机会,在自然放松的状态下, 揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。 (3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的 教学效果。 五、教学媒体:多媒体六、教学和活动过程: 教学过程设计如下: 〈一〉、提出问题 [引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题 1、[学生回答]分组交流、讨论 (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2, (2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。 (3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2、[学生回答]总结完全平方公式的语言描述: 两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3、[学生回答]完全平方公式的数学表达式: (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 〈三〉、运用公式,解决问题 1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________,(m-n)2=_______________, (-m+n)2=____________,(-m-n)2=______________, (a+3)2=______________,(-c+5)2=______________, (-7-a)2=______________,(0.5-a)2=______________. 2、判断: ()①(a-2b)2=a2-2ab+b2 ()②(2m+n)2=2m2+4mn+n2 ()③(-n-3m)2=n2-6mn+9m2 ()④(5a+0.2b)2=25a2+5ab+0.4b2 ()⑤(5a-0.2b)2=5a2-5ab+0.04b2 ()⑥(-a-2b)2=(a+2b)2 ()⑦(2a-4b)2=(4a-2b)2 ()⑧(-5m+n)2=(-n+5m)2 3、小试牛刀 ①(x+y)2=______________; ②(-y-x)2=_______________; ③(2x+3)2=_____________; ④(3a-2)2=_______________; ⑤(2x+3y)2=____________; ⑥(4x-5y)2=______________; ⑦(0.5m+n)2=___________; ⑧(a-0.6b)2=_____________. 〈四〉、[学生小结] 你认为完全平方公式在应用过程中,需要注意那些问题? (1)公式右边共有3项。 (2)两个平方项符号永远为正。 (3)中间项的符号由等号左边的两项符号是否相同决定。 (4)中间项是等号左边两项乘积的2倍。 〈五〉、冒险岛: (1)(-3a+2b)2=________________________________ (2)(-7-2m)2=__________________________________ (3)(-0.5m+2n)2=_______________________________ (4)(3/5a-1/2b)2=________________________________ (5)(mn+3)2=__________________________________ (6)(a2b-0.2)2=_________________________________ (7)(2xy2-3x2y)2=_______________________________ (8)(2n3-3m3)2=________________________________ 〈六〉、学生自我评价 [小结]通过本节课的学习,你有什么收获和感悟? 本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。 〈七〉[作业]P34随堂练习P36习题 初中数学《完全平方公式》优质课件篇二 总体说明: 完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义. 本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用. 一、学生学情分析 学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础. 学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力. 二、教学目标 知识与技能: (1)让学生会推导完全平方公式,并能进行简单的应用. (2)了解完全平方公式的几何背景. 数学能力: (1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力. (2)发展学生的数形结合的数学思想. 情感与态度: 将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”. 三、教学重难点 教学重点:1、完全平方公式的推导; 2、完全平方公式的应用; 教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”; 2、完全平方公式结构的认知及正确应用. 四、教学设计分析 本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习. 第一环节:学生练习、暴露问题 活动内容:计算:(a+2)2 设想学生的做法有以下几种可能: ①(a+2)2=a2+22 ②(a+2)2=a2+2a+22 ③正确做法; 针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证? 活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即: (a+2)2=a2+22,如果不将这种定式思维*,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔. 第二环节:验证(a+2)2=a2–4a+22 活动内容:(a+2)2=(a+2)(a+2)=a2+2a+2a+22 活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”. 第三环节:推广到一般情况,形成公式 活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2 活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐. 第四环节:数形结合 活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢? 展示动画,用几何图形诠释完全平方公式的几何意义. 学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考) 活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想. 第五环节:进一步拓广 活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2 方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2 方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2 活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用. 第六环节:总结口诀、认识特征 活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2 (a–b)2=a2–2ab+b2 特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同; ②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式) 口诀:首平方,尾平方,首尾相乘的两倍在中央. 活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误. 第七环节:公式应用 活动内容:例:计算:①(2x–3)2; ②(4x+)2 解:①(2x–3)2=(2x)2–2(2x)3+32=4x2–12x+9 ②(4x+)2=(4x)2+2(4x)()+()2=16x2+2xy+ 活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段. 第八环节:随堂练习 活动内容:计算:①;②;③(n+1)2–n2 活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏. 第九环节:学生PK 活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快. 活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用. 第十环节:学生反思 活动内容:通过今天这堂课的学习,你有哪些收获? 收获1:认识了完全平方公式,并能简单应用; 收获2:了解了两数和与两数差的完全平方公式之间的差异; 收获3:感受到数形结合的数学思想在数学中的作用. 活动目的:通过对一堂课的归纳与巩固学生对完全平方公式的认识,体会数学思想的精妙. 第十一环节:布置作业: 课本P43习题1.13初中数学《完全平方公式》优质课件篇三 教学目标 1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算. 2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力. 3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心. 教学重难点 教学重点: 1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释. 2、会运用公式进行简单的计算. 教学难点: 1、完全平方公式的推导及其几何解释. 2、完全平方公式的结构特点及其应用. 教学工具 课件 教学过程 一、复习旧知、引入新知 问题1:请说出平方差公式,说说它的结构特点. 问题2:平方差公式是如何推导出来的? 问题3:平方差公式可用来解决什么问题,举例说明. 问题4:想一想、做一做,说出下列各式的结果. (1)(a+b)2 (2)(a-b)2 (此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.) 二、创设问题情境、探究新知 一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图) (1)四块面积分别为: (2)两种形式表示实验田的总面积: ①整体看:边长为的大正方形,S=; ②部分看:四块面积的和,S=. 通过以上探索你发现了什么? 问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧? 问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证. (教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证) 问题3:你能说说(a+b)2=a2+2ab+b2 这个等式的结构特点吗?用自己的语言叙述. (结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍) 问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证. 我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式. 问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗? 语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍. 强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减. 三、例题讲解,巩固新知 例1:利用完全平方公式计算 (1)(2x-3)2 (2)(4x+5y)2 (3)(mn-a)2 解:(2x-3)2=(2x)2-2o(2x)o3+32 =4x2-12x+9 (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2 =16x2+40xy+25y2 (mn-a)2=(mn)2-2o(mn)oa+a2 =m2n2-2mna+a2 交流运用完全平方公式计算的一般步骤 (1)确定首、尾,分别平方; (2)确定中间系数与符号,得到结果. 四、练习巩固 练习1:利用完全平方公式计算 练习2:利用完全平方公式计算 练习3: (练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.) 五、变式练习 六、畅谈收获,归纳总结 1、本节课我们学习了乘法的完全平方公式. 2、我们在运用公式时,要注意以下几点: (1)公式中的字母a、b可以是任意代数式; (2)公式的结果有三项,不要漏项和写错符号; (3)可能出现①②这样的错误.也不要与平方差公式混在一起. 七、作业设置

整式的优秀教案

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。接下来是我为大家整理的初一数学《整式》教案 范文 ,希望大家喜欢! 初一数学《整式》教案范文一 【教学习目标】 一、知识与技能 (1)能用代数式表示实际问题中的数量关系. (2)理解单项式、单项式的次数 ,系数等概念,会指出单项式的次数和系数. 讲授法、谈话法、讨论法。 【教学重点】 单项式的有关概念 【教学难点】 负系数的确定以及准确确定一个单项式的次数 【课前准备】 教师准备教学用课件。 【教学过程】 一、新课引入 教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题: 1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题: (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢? (2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1倍,如果通过冻土地段所需要t小时,能用含t的式子表示这段铁路的全长吗? (3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通 过冻土地段需要u小时,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少千米? 分析:(1)根据速度、时间和路程 之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米). (2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米). (3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米. 思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式. 上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简. kb2.我们再来看几个用含字母的式子表示数量关系的问题. 用含有字母的式子填空,看看列出的式子有什么特点. (1)边长为a的正方体的表面积为______,体积为_______. (2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元. (3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米. (4)数n的相反数是_______. 教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流. 上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n. 观察上面各式中运算有什么共同特点? 上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n. 像上面只含有数与字母的积的式子叫做单项式.单独的一个数 或一个字母也是单项式.如: -2,a, ,都是单项式,而 ,1+x都不是单项. 单项式中的数字因数叫做这个单项式的系数,例如: 6a2的 系数是6,a3的系数是1,-n的系数是-1,- 的系数是- . 单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式 的系数是1或-1时通常省略不写. 初一数学《整式》教案范文二 一. 教学内容: 整式 1. 单项式的有关概念,如何确定单项式的系数和次数; 2. 多项式的有关概念,如何确定多项式的系数和次数; 3. 什么是整式; 4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力. 二. 知识要点: 1. 用字母表示数时 ,应注意以下几点: (1)加、减、乘 、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式. (2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a. (3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作 . (4)代数式中大于1的分数系数一般写成假分数,例如 2. 单项式 (1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意: ①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式 (x+1) 3不是单项式. ②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算. ③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式. (2)单项式 的系数:是指单项式中的数字因数, 如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1. (3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点: ①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4. ②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数. ③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式- 2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14. ④单独一个非零数字的次数是零. 3. 多项式 (1)多项式:是指几个单项式的和. 其含义有: ①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式, ( 2)多项式的项:是指多项式中的每个单项式. 其中不含字母 的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号). 一个多项 式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项. (3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2 +1的次数是4,而不是4+2=6,故此多项式叫做四次三项式. 4. 单项式与多项式统称为整式. 三. 重点难点: 1. 重点:单项式和多项式的有关概念. 2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数. 【典型例题】 例1. (1)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天. (2)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是 ( ) A. a(1+m%)(1-n%)元B. am%(1-n%)元 C. a(1+m%)n%元 D. a(1+m%·n%)元 评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号 省略,如果是除 法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等) 例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数. 单独一个数字是单项式,它的次数是0. 8a3x的系数是8,次数是4; -1的系数是-1,次数是0. 评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系 ,如果含有加、减、除的关系,那么它就不是单项式. 例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计 )和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式. 分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断. 解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab +ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式. 评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式. 故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2. 解:2 评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的. 例5. 把代数式2a2c3和a3x2的共同点填写在下 列横线上. 例如:都是整式. (1)都是___ _________________; (2)都是____________________. 分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a. 解:(1)五次式;(2)都含有字母a. 评析:主要观察单项式的特征. 例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值. 初一数学《整式》教案范文三 一、内容及其分析 1、教学内容:整式的有关概念,即能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等. 2、内容分析:本节课要学的内容整式的有关概念指的是理解并掌握整式的有关概念,能够对一些整式进行分析,其核心是整式的有关概念,理解它关键就是要能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.。学生已经学过有理数的运算,本节课的内容整式的有关概念就是在此基础上的发展。由于它还与根式的运算有直接的联系,所以在本学科有重要的地位,并有不可忽视的作用,是本学科的核心内容。教学的重点是单项式的系数、次数,多项式的项数、次数等概念.解决重点的关键是通过对问题的解决使学生对单项式有个初步的理解,并归纳 总结 出单项式的次数和系数等概念. 二、目标及其解析 1、目标定位:理解并掌握整式的有关概念,能够对一些整式进行分析; 2、目标解析:理解并掌握整式的有关概念,就是指能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等. 三、问题诊断与分析 在本节课的教学中,学生可能遇到的问题是多项式的项数、次数等概念难以理解,产生这一问题的原因是单项式的项数、次数的影响。要解决这一问题,就要先分清单项式与多项式的区别,其中关键是能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等. 四、教学支持条件分析 五、教学过程设计: (一).创设问题情境,激发学生兴趣,引出本节内容 问题1:填空,观察所填式子的特点: (1)边长为x的长方形的周长是__________; (2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米; (3)若正方体的的边长是a,则它的表面积是_______,体积是________; (4)设n是一个数,则它的相反数是________. 设计意图:通过此问题让学生知道可以用字母表示数,从实际问题中列出式子,体会数学来源于生活,从而体会整式的实际意义。 师生活动: 1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念.所填式子是4x、vt、6a2、a3、-n,特点是都是数字或字母的乘积. 2.、引导学生在观察的基础上归纳单项式的定义: 单项式:由数字或字母乘积组成的式子是单项式. 分析式子4x、vt、6a2、a3、-n得出: 单项式中的数字因数叫作单项式的系数(4x、vt、6a2、a3、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、6a2、a3、-n的次数分别是1、2、2、3、1). 例1: 用单项式填空,并指出它们的系数和次数: (1)每包书有12册,n包书有___________册; (2)底边长为a,高为h的三角形的面积是_________; (3)一个长方体的长、宽都是a,高是h,它的体积是________; (4)一台电视机原价是a元,现按原价的9折出售,那么这台电视机现在的售价为______元; (5)一个长方形的长是0.9,宽是a,这个长方形的面积是_________. 解:(1)12n,它的系数为12,次数是1; (2) ,它的系数是 ,次数是2; (3) ,它的系数是1,次数是3; (4)0.9a,它的系数是0.9,次数是1; (5)0.9a,它的系数是0.9,次数是1. 问题2:根据对单项式的理解,解决下列问题. 小明房间的窗户如图(1)所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同). 图(1)装饰物所占的面积是______. (2)某校学生总数为x,其中男生人数占总数的 ,男生人数为 ; (3)一个长方体的底面是边长为a的正方形,高是h,体积是 . 设计意图:通过上面单项式的了解让学生再一次在实际问题中列出式子,对比看是不是与单项式相似,加深对概念的理解。 师生活动: 1、学生独立思考,分析第(1)个问题中装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为 ,所以装饰物所占的面积恰好是半径为 的一个圆的面积即 ;(2)中男生人数为 x;(3)中这个长方体的体积是a2h. 2、引导学生在解决问题后,分析各个单项式的系数和次数,并进行交流,在交流中纠正一些不正确的想法. (二)问题引申、探索多项式的有关概念 问题3: 填空,然后分析所填式子的特点: 1、温度由t°C下降5°C后是________°C; 2、买一个 篮球 需要x元,买一个 排球 需要y元,买一个 足球 需要z元,买3个篮球、5个排球、2个足球共需要________元; 3、如图(2),三角尺的面积是________; 图(2) 图(3) 如图(3)是一所住宅的建筑面积的平面图,这所住宅的建筑面积是_______平方米. 设计意图:通过学生自己列式体会式子形成的过程,使之与单项式产生对比,加深对多项式的理解。 师生活动: 1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解多项式的概念.所填式子是t-5、3x+5y+2z、 、 ,特点是都可以看做是单项式的和组成的式子. 2、引导学生在观察的基础上归纳多项式的定义及相关概念. 3、多项式:几个单项式的和叫作多项式. 在多项式中每一个单项式叫作多项式的项,其中不字母的项叫作常数项,多项式里次数最高的项的次数叫作这个多项式的次数. 单项式和多项式统称为整式. 让学生分析上述多项式中的项、次数等. t-5的项是t和-5,次数是1;3x+5y+2z的项是3x、5y、2z,次数是1次; 的项是 和 ,次数是2; 项是x2、2x、38,次数是2. 同时让学生辨别多项式是单项式的和,因此多项式的项包含它前面的符号比如多项式3x-4y的第二项是-4y,而不是4y. 例2: 用多项式填空,并指出它们的项和次数: (1)温度由t°C下降5°C后是____________; (2)甲数x的 与乙数y的 的差可以表示为____________; (3)如下图,圆环的面积为____________. 解:(1)t-5,它的项是5和-5,次数是1; (2) ,它的项是 ,次数是1; (3) ,它的项是 ,次数是2. 实际应用: 例3:一条河流的水流速为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙 两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中顺水行驶和逆水行驶的速度分别是多少? 初一数学《整式》教案范文相关 文章 : 1. 初中七年级上册数学《整式》教案优质范文五篇 2. 七年级上册数学《整式的加减》教案精选范文五篇 3. 初一数学上册《整式》教学设计 4. 初一数学整式练习题及答案 5. 初一数学复习知识:整式加减 6. 初一数学教程视频:整式 7. 初一上册数学整式提高训练 8. 七年级上册数学整式的加减教案 9. 初一数学整式手抄报

整式与分式课件

三年级学生?

唯一解:顾名思义,解必须有,而且唯一。就初中阶段而言,这种题型有2种考法:第一种是能化成一次方程ax=b的,第二种是能化成一元二次方程的。先说前者。一次方程的时候如果a=0就是无数解或者无解,只有a不为0的时候才有唯一解,不过注意,分式方程很容易产生增根,因此要记住把产生增根的点排除掉。送个题你参悟:

x/2(x+1)+(kx+1)/(x+1)=1

问:什么时候方程有唯一解?什么时候无解?再提第二个。这种比较麻烦,一般会出在最后3道题之一。

一元二次方程唯一解可以是两根相等或者其中一个是增根。要记住一定要判断判别式,看是否有根(不要忘记检查二次项系数!!)

现在在教初二,手中暂时没有一元二次方程的分式方程题目,你自己领悟吧....不行我改天给你找一个。

分式课件

分式是指有除法运算,而且除数中含有未知数的有理式。下面是我推荐给大家的八年级上册数学分式课件,希望大家有所收获。 教学任务分析 教材的地位和作用 本节课是北师大版八年级下册第五章第一节《分式》第一课时。分式是初中数学中继整式之后学习的一个代数基础知识,是对小学所学分数的延伸和扩展,是建立在本册第四章的分解因式的基础上学习的,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。学好本节课,不仅能够增强学生的运算能力,提高运算速度,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础 结合学生情况教学目标设计 由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。 学生对分数和整式的理解、掌握不熟练,给本节分式的学习带来了困难,因为其性质与运算是完全类似的,对这种状况,要以基础知识的回忆和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下4个方面为本节课的教学目标: 1.知识与技能目标 ⑴使学生了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.明确分母不得为零是分式概念的组成部分. ⑵掌握分式有意义的条件.认识事物间的联系与制约关系. 2.过程与方法目标 ⑴能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感, ⑵通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题. ⑶培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流. 3.情感与价值目标 ⑴.通过体验动手操作、合作交流、探究解决的学习过程,获得成功的经验,体验数学活动充满 着探索和创造,体会分式的模型思想,激发学生解决问题的积极性和主动性。 ⑵在土地沙化问题中,体会保护人类生存环境的重要性。培养学生严谨的思维能力. 4.现代教学手段 多媒体 幻灯 投影 ①课堂使用课件教学,直观、教学知识点覆盖全面,教学内容丰富。 ②幻灯、投影的使用,学生习题情况迅速展示于课堂,有利于老师理想处理本节学生存在的问题。达到课堂效果。 学习重点 分式的概念与意义(即了解分式的形式 (A、B是整式,并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零. 设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。 学习难点:理解和掌握分式有无意义、分式值为零时的条件 设计意图:由于分式的分母中含有字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,理解和掌握分式值为零时的条件,便成了本节课的教学难点。 教学准备 ①熟悉教材,明确教学目标②备学生,清楚他们对于分数、整式基础知识欠缺。③借鉴本届教学设计、课件,完善自己本节的课件内容。课件体现以学生为主题教学思想,大部分学生多动手才会掌握,课堂做到精讲多练,给学生练习、交流多留时间。最后选典型题目,检测本节效果,应该理想。 教学方法:分组讨论,鼓励法,类比,引导,分析 教学过程设计 本节课由六个教学环节组成,它们是①自主探究:适时点题 ②分析概念,落实双基 ③动手操作、探索新知: ④快乐课堂、思维晋级⑤大显身手 自我检测⑥师生归纳、总结⑦作业。 其具体内容与分析如下: 教学过程(一自主探究: 自主完成课本P109练习题后写下你的疑惑 1. 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划任务。 如果设原计划每月固沙造林x公顷?那么 (1原计划完成造林任务需要多少个月? (2实际完成造林任务用了多少个月? 2、解读探究 认真观察上面问题中出现的代数式,它们有什么共同特征? 目的:⑴以素质教育,高效课堂为指导思想,学生先自己学习力所能及的部分,老师根据学生的实际情况指点教学。 ⑵对数学来源于生活,建模思想有潜移默化作用。 教学预设:数学基础较好同学难度不大。 (二分析概念、落实双基 1.分式的概念 (1由学生分组讨论分式的定义,得到分式概念的 (2由学生举几个分式的例子 一般地,用A、B表示两个整式,A÷B可以表示成 的形式。如果B中含有字母,那么称 为分式.其中A叫做分式的分子,B为分式的分母. (3学生小结分式的概念中应注意的问题. ①分母中含有字母. ②如同分数一样,分式的分母不能为零. 小试牛刀:下列各式中,哪些是整式?哪些是分式? 海阔凭鱼跃: 你能用下面的整式构造分式吗? -3,-a, ab-b, 目的:对于分式概念进行巩固,为以后的学习打基础。 教学预设:这个题目灵活性较大,给学生思维以足够的空间,对于概念的掌握有很好的检测作用。 2.分式有无意义,值为零。 思考:⑴分式的分母有什么条件限制? 当B=0时, 分式 无意义. 当B≠0时,分式 有意义. ⑵当 =0时,分子、分母满足什么条件? 当A=0而B≠0时,分式 的值为零. 目的:分式有无意义的条件,值为零易混,师引导学生得正确为重难点突破打基础。 教学预设:难度不大,应有板书,条理化。 (三动手操作、探索新知: 、 例1 ⑴当a=1,2,-1时,求分式 的值; ⑵ 当a取何值时,分式 有意义? 解:(1当a=1时, 当 a=2时 (2当分母的值等于零时,分式没有意义,除此以外,分式都有意义。 由分母2a-1=0,得a= ,当a取 以外的任何实数时,分式 有意义。 目的:经历分式求值,感知符号的意义,为以后的学习打基础。学习分式有意义数学情况。 教学预设:(1中分式求值,学生可以自学;(2题目老师稍做提示,即可掌握。 问题解决:当x取何值时,下列分式有意义? 解:(1由分母4x+1=0,得x=- . 当a取- 以外的任何实数时,分式 有意义。 (2由分母x2+1=0,得x2=-1 当a取任何实数时,分式 有意义。 目的:对于分式有意义进行巩固提高。 教学预设:(1学生仿例1可以自己做;(2学生做到x2=-1,任意实数可能答不出来,老师这事予以讲解。 思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做? 例2: 当x取何值时,下列分式的值为零? 解:(1由分子x-1=0得x=1 而当x=1时,分母x2+2x-3≠0. ∴当x=1时,原分式值为零. 目的:(1分式值为零与有无意义题目学生易混淆,这个题目对分式值为零思路指导很理想。(2对分式值为零进行巩固掌握。 教学预设:(1学生对此题步骤模糊,老师讲解再总结分式值为零条件及做题步骤较理想。(2学生自己做并交流 小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零. (四快乐课堂 、思维晋级: x为何值时,分式 ⑴有意义 ⑵ 0 ⑶ 负数 ⑷正数 目的:①对本节课重难点有巩固作用 ②正数与负数对于分式值有更全面的了解。 教学预设:⑴⑵小题难度不大,⑶小题大部分学生应予以提示,⑷学生自己做,没有问题。 (五大显身手 自我检测 1.当——时,分式 有意义? 2.判断下列代数式 分式有——个。 3.当x_____时,分式 =0 4、下列正确 A.分式的分子中一定含字母。 B.当分母为零时,分式无意义。 C.当分母为零时,分式值为零。 目的:1.高效课堂,课堂知识点大部分要求掌握。 2.对本节上课效果进行检测,及时查漏补缺。 教学预设:这几个题目难度一般,知识点覆盖较全面,能达到检测作用,效果应该理想。 (六 师生归纳 本节课你学到了哪些知识和方法? 1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零? 设计意图:师生交流,让学生畅所欲言,大胆谈自己的收获和感想,充分发挥学生的主体地位,从学习知识、方法、和延伸三方面进行归纳,培养及时归纳知识的习惯和提炼归纳的能力。

整式第一课时课件(整式的加减第一课时优质课)的介绍,今天就讲到这里吧,感谢你花时间阅读本篇文章,更多关于整式第一课时课件(整式的加减第一课时优质课)的相关知识,我们还会随时更新,敬请收藏本站。