高数微积分课件(高数微积分),老铁们想知道有关这个问题的分析和解答吗,相信你通过以下的文章内容就会有更深入的了解,那么接下来就跟着我们的小编一起看看吧。

高数微积分课件(高数微积分)

高数微积分课件(高数微积分)

高等数学是大学理工科专业中的一门重要课程,而其中的微积分又是高等数学中的一块难点。为了帮助学生更好地掌握微积分知识,学校开发了一套高数微积分课件。

这套课件的内容包含了微积分的基础知识。从导数的定义到微分中值定理,课件系统地介绍了微积分的重要概念和定理。课件还提供了大量的例题和习题,提供学生练习和巩固所学知识的机会。

这套课件强调了与实际问题的联系。微积分是一门极具实用性的学科,可以用来描述和解决各种实际问题。在课件中,教师通过举例子的方式,将抽象的微积分理论与实际问题联系起来,使学生更好地理解和应用微积分知识。

这套课件还采用了图形化的教学方式。微积分中的很多概念和理论都可以通过图形来进行直观地展示和解释。课件中将大量的图表和图形用于讲解,使学生更容易领会微积分的思想和方法。

这套高数微积分课件具有良好的互动性。课件中融入了一些小练习和测验,学生可以直接在课件上进行答题和交互。学生还可以通过课件与教师进行在线讨论和提问,随时获得解答和指导。

这套高数微积分课件为学生提供了一个系统、实用、直观和互动的学习平台。通过使用这套课件,学生可以更好地理解和应用微积分知识,提高数学分析和问题解决能力,为将来的学习和工作打下坚实的基础。

高数微积分课件(高数微积分)

(1)微积分的基本公式共有四大公式:

1.牛顿-莱布尼茨公式,又称为微积分基本公式

2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分

3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分

4.斯托克斯公式,与旋度有关

(2)微积分常用公式:

Dx sin x=cos x

cos x = -sin x

tan x = sec2 x

cot x = -csc2 x

sec x = sec x tan x

csc x = -csc x cot x

sin x dx = -cos x + C

cos x dx = sin x + C

tan x dx = ln |sec x | + C

cot x dx = ln |sin x | + C

sec x dx = ln |sec x + tan x | + C

csc x dx = ln |csc x - cot x | + C

sin-1(-x) = -sin-1 x

cos-1(-x) = - cos-1 x

tan-1(-x) = -tan-1 x

cot-1(-x) = - cot-1 x

sec-1(-x) = - sec-1 x

csc-1(-x) = - csc-1 x

Dx sin-1 ()=

cos-1 ()=

tan-1 ()=

cot-1 ()=

sec-1 ()=

csc-1 (x/a)=

sin-1 x dx = x sin-1 x++C

cos-1 x dx = x cos-1 x-+C

tan-1 x dx = x tan-1 x- ln (1+x2)+C

cot-1 x dx = x cot-1 x+ ln (1+x2)+C

sec-1 x dx = x sec-1 x- ln |x+|+C

csc-1 x dx = x csc-1 x+ ln |x+|+C

sinh-1 ()= ln (x+) xR

cosh-1 ()=ln (x+) x≥1

tanh-1 ()=ln () |x| 1

sech-1()=ln(+)0≤x≤1

csch-1 ()=ln(+) |x| >0

Dx sinh x = cosh x

cosh x = sinh x

tanh x = sech2 x

coth x = -csch2 x

sech x = -sech x tanh x

csch x = -csch x coth x

sinh x dx = cosh x + C

cosh x dx = sinh x + C

tanh x dx = ln | cosh x |+ C

coth x dx = ln | sinh x | + C

sech x dx = -2tan-1 (e-x) + C

csch x dx = 2 ln || + C

duv = udv + vdu

duv = uv = udv + vdu

→ udv = uv - vdu

cos2θ-sin2θ=cos2θ

cos2θ+ sin2θ=1

cosh2θ-sinh2θ=1

cosh2θ+sinh2θ=cosh2θ

Dx sinh-1()=

cosh-1()=

tanh-1()=

coth-1()=

sech-1()=

csch-1(x/a)=

sinh-1 x dx = x sinh-1 x-+ C

cosh-1 x dx = x cosh-1 x-+ C

tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C

coth-1 x dx = x coth-1 x- ln | 1-x2|+ C

sech-1 x dx = x sech-1 x- sin-1 x + C

csch-1 x dx = x csch-1 x+ sinh-1 x + C

sin 3θ=3sinθ-4sin3θ

cos3θ=4cos3θ-3cosθ

→sin3θ= (3sinθ-sin3θ)

→cos3θ= (3cosθ+cos3θ)

sin x = cos x =

sinh x = cosh x =

正弦定理:= ==2R

余弦定理:a2=b2+c2-2bc cosα

b2=a2+c2-2ac cosβ

c2=a2+b2-2ab cosγ

sin (α±β)=sin α cos β ± cos α sin β

cos (α±β)=cos α cos β sin α sin β

2 sin α cos β = sin (α+β) + sin (α-β)

2 cos α sin β = sin (α+β) - sin (α-β)

2 cos α cos β = cos (α-β) + cos (α+β)

2 sin α sin β = cos (α-β) - cos (α+β)

sin α + sin β = 2 sin (α+β) cos (α-β)

sin α - sin β = 2 cos (α+β) sin (α-β)

cos α + cos β = 2 cos (α+β) cos (α-β)

cos α - cos β = -2 sin (α+β) sin (α-β)

tan (α±β)=,cot (α±β)=

ex=1+x+++…++ …

sin x = x-+-+…++ …

cos x = 1-+-+++

ln (1+x) = x-+-+++

tan-1 x = x-+-+++

(1+x)r =1+rx+x2+x3+ -1= n

= n (n+1)

= n (n+1)(2n+1)

= [ n (n+1)]2

Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt

β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx

高数微积分

一、性质不同

1、高等数学:相对于初等数学而言,数学的对象及方法较为繁杂的一部分;通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

2、微积分:是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

二、主要内容不同

1、高等数学:主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

2、微积分:主要内容包括:切线、函数、极限、积分、微分。三、应用不同

1、高等数学:在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”。

2、微积分:;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

参考资料来源:百度百科-高等数学

参考资料来源:百度百科-微积分

微积分的来源PPT

微积分的历史:

费尔马 (Fermat)是在牛顿和莱布尼兹之前,在微分和积分两个方面作出贡献最多的一个数学家.

费尔马《求极大值与极小值的方法》 (写于1636年以前)在求曲线的切线问题和函数的极大,极小值问题上做出了重要贡献.用现代语言来说,他都是先取增量,而后让增量趋于0.这正是微分学的实质之所在.

费尔马还考虑了求抛物体的重心问题.他是

用求极大,极小值的方法得到,而不是用求和的方法.这使他的朋友罗贝瓦尔感到惊奇.但是,他居然没有看到这两类问题——微分学问题和积分学问题——的基本联系,与微积分基本定理擦肩而过.

在数学史上,拉格朗日,拉普拉斯和傅立叶都曾称"费尔马是真正发明者."但泊松正确地指出,费尔马不应当享有这一荣誉.

另一个对微积分作出预言的是牛顿的老师巴罗 (I.Barrow,1630——1677),他于1630年生于伦敦,毕业于剑桥大学,他在物理,数学,天文和神学方面都有造诣.他也是当时研究古希腊数学的著名学者.他翻译了欧几里得的《几何原本》,也是第一个担任剑桥大学卢卡斯讲座教授的人.

巴罗的贡献

1669年,他辞去了他的教授席位,并推荐牛顿取得此席位.1673年他被任命为剑桥三一学院院长,1677年逝世.

巴罗最重要的著作是1699-1670年发表的《光学和几何学讲义》,在这本书中我们能够找到非常接近近代微分过程的步骤.他把作曲线的切线和曲线的求积联系了起来,用现代符号表示就是:

巴罗的确已经走到了微积分基本定理的大门口.但在巴罗的书中,这两个定理相隔二十余个别的定理,并且没有把它们对照起来,也几乎没有使用过它们.这说明,巴罗并没有从一般概念意义下理解

他们.但是我们知道,只有一般概念才能阐明问题的本质,才能开拓广阔的应用道路.

到此为止,微积分这门学科的基础已经具备,但象现在这样的微积分还没有.正如后来莱布尼兹确切表达的:"在这样的科学成就之后,所缺少的知识引出问题的迷宫的一条线.即依照代数样式的解析计算法."

在创建微积分的过程中究竟还有多少事情要做呢

1)需要以一般形式建立新计算法的基本概念及其相互联系,创立一套一般的符号体系,建立计算的正确程序或算法.

2)为这门学科重建逻辑上的一致的,严格的基础.

第1)项由牛顿和莱布尼兹各自独立完成.

第2)项由法国伟大的分析学家A.L柯西(Cauchy,1789_1857)及其他19世纪数学家完成.牛顿的牛顿第三定理和微积分的提出历史纠纷:

1683-1684年,胡克,哈雷(Edmund Halley, 1656-1742),雷恩(Christopher Wren, 1632-1723)等人先后发现了引力的平方反比定律,但是都无法证明.为此,雷恩愿意以一本价值40先令的书馈赠能证明这个定律的人.胡克声称他已经得到了证明,但是不愿公开其结果;

1684年8月,哈雷特意到剑桥询问牛顿,牛顿称这个问题他早已解决,并答应给哈雷一份证明.同年11月,牛顿如约将他的证明送给哈雷.哈雷立即再次赶赴剑桥,劝说牛顿到皇家学会发表他的结果.

1686年,万有引力理论的论文在皇家学会发表,而且皇家学会决定正式出版它.

在一次皇家学会会议上,胡克声称他在几年前就已经证明了牛顿的上述结果,并且暗示牛顿是从他那里得到这种知识的,牛顿对此非常气愤.

哈雷从中进行斡旋,试图息事宁人.他劝牛顿:"胡克可能希望你可以在序言中提及他",但是这遭到了牛顿的拒绝.经过哈雷的再三劝说,牛顿最后才答应写下这样一段脚注:"牛顿,雷恩,胡克,哈雷都从开普勒的定律得到了引力定律".可是接下来又出现了麻烦,即皇家学会没有经费出版牛顿的著作.最后,还是哈雷用自己的钱在1687年出版了《自然哲学之数学原理》. 1704年,牛顿的《光学》出版.因为在附录中牛顿详细论述了他的流数法,从而引起了和莱布尼兹关于微积分发明权的争论.其实微积分是牛顿和莱布尼兹独立发现的,所不同的是,牛顿的发现时间较早,牛顿是1666年,而莱布尼兹是1676年左右;莱布尼兹的发表时间较早,莱布尼兹是1684年,而牛顿最早是在1687年的《自然哲学之数学原理》公布了他的流数法.

牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:"十年前在我和最杰出的几何学家莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法,作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法.他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外"(但在第三版及以后再版时,这段话被删掉了).

因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的.

牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹.莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念,得出运算法则,其数学的严密性与系统性是牛顿所不及的.

在牛顿和莱布尼兹之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生,支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立.英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的"流数术"中停步不前,因而数学发展整整落后了一百年.

高等微积分教程

《微积分学教程(第1卷)》(Г.М.菲赫金哥尔茨)电子书网盘下载免费在线阅读

链接: https://pan.baidu.com/s/1dDuS7c1C3YXpwCa0XSiH2A提取码: qf7j

书名:微积分学教程(第1卷)

作者:Г.М.菲赫金哥尔茨

豆瓣评分:9.4

出版社:高等教育出版社

出版年份:2006-1-1

页数:526

内容简介:

本书是一部卓越的数学科学与教育著作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。在世界范围内广受欢迎。

本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。

本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。

本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。

高数微积分PPT

微积分公式Dxsinx=cosxcosx=-sinxtanx=sec2xcotx=-csc2xsecx=secxtanxcscx=-cscxcotx。

1、∫x^αdx=x^(α+1)/(α+1)+C(α≠-1)

2、∫1/xdx=ln|x|+C

3、∫a^xdx=a^x/lna+C

4、∫e^xdx=e^x+C

5、∫cosxdx=sinx+C

6、∫sinxdx=-cosx+C

7、∫(secx)^2dx=tanx+

8、∫(cscx)^2dx=-cotx+C

9、∫secxtanxdx=secx+C

10、∫cscxcotxdx=cscx+C

11、∫1/(1-x^2)^0.5dx=arcsinx+C

《微积分:高等数学(1)》是高等学校经济管理类各专业数学基础课系列教材之一。全书共分八章,内容包括:函数及其图形、极限和连续、导数与微分、中值定理和导数的应用、一元积分学、多元函数微积分、无穷级数、常微分方程。

关于高数微积分课件(高数微积分)的问题分享到这里就结束啦,希望可以解决您的问题哈!