大家好,今天来为您分享正比例函数2课件(反比例函数课件)的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!

正比例函数和反比例函数是数学中常见的两种函数形式。它们在实际生活中的应用非常广泛,可以帮助我们解决各种实际问题。

正比例函数2课件

让我们来了解一下正比例函数。正比例函数的特点是,当一个变量的值增加时,另一个变量的值也相应增加,而且它们之间的比例保持不变。以直线y=kx为例,k为比例系数,当x增大时,y也增大,两者之间的关系保持不变。正比例函数在实际应用中有很多例子,比如物体的速度和时间的关系、价格和数量的关系等等。

让我们来了解一下反比例函数。反比例函数的特点是,当一个变量的值增加时,另一个变量的值相应地减小,而且它们之间的乘积保持不变。以直线y=k/x为例,k为比例系数,当x增大时,y减小,两者之间的关系保持不变。反比例函数在实际应用中也有很多例子,比如速度和时间的关系、水流量和管道的截面积的关系等等。

正比例函数和反比例函数在解决实际问题中起到了很大的作用。通过确定比例系数,我们可以得到两个变量之间的具体关系,帮助我们预测未来的变化趋势。可以利用正比例函数来估计在给定时间内的销售额,也可以利用反比例函数来计算在给定时间内完成一项任务所需要的人数。

正比例函数和反比例函数在实际生活中发挥着重要作用。通过它们,我们可以解决各种实际问题,提供准确的预测和决策支持。在学习数学的过程中,我们应该充分理解和掌握这两种函数形式的特点和应用,以便在实际生活中灵活运用。通过不断学习和探索,我们可以提高数学素养,应对各种实际问题,为自己和社会创造更大的价值。

正比例函数2课件(反比例函数课件)

小学六年级数学《正比例》课件篇一 教学目标: 1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。 2.能根据正比例的意义,判断两个相关联的量是不是成正比例。 3.结合丰富的事例,认识正比例。 教学重点: 1、结合丰富的事例,认识正比例。 2、能根据正比例的意义,判断两个相关联的量是不是成正比例。 教学难点: 能根据正比例的意义,判断两个相关联的量是不是成正比例。 教学用具:课件 教学过程: 一、课前预习 预习书19---21页内容 1、填好书中所有的表格 2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系? 3、把不理解的内容用笔作重点记号,待课上质疑解答 二、展示与交流 活动一:在情境中感受两种相关联的量之间的变化规律。 (一)情境一: 1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。 2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗? 说说从数据中发现了什么? 3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。 说说你发现的规律。 (二)情境二: 1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下: 2、请把下表填写完整。 3、从表中你发现了什么规律? 说说你发现的规律:路程与时间的比值(速度)相同。 (三)情境三: 1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。 2、把表填写完整。 3、从表中发现了什么规律? 应付的钱数与质量的比值(也就是单价)相同。 4、说说以上两个例子有什么共同的特点。 小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。 5、正比例关系: (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。 (2)购买苹果应付的钱数与质量有什么关系? 6、观察思考成正比例的量有什么特征? 一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。 (四)想一想: 1、正方形的周长与边长成正比例吗?面积与边长呢?为什么? 师小结: (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。 请你也试着说一说。 (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。 请生用自己的语言说一说。 2、小明和爸爸的年龄变化情况如下: 小明的年龄/岁67891011 爸爸的年龄/岁3233 (1)把表填写完整。 (2)父子的年龄成正比例吗?为什么? (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。 与同桌交流,再集体汇报 在老师的小结中感受并总结正比例关系的特征。 小学六年级数学《正比例》课件篇二 教学目标: 1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。 2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。 3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。 教学过程: 一、谈话导入 1.出示苹果、梨、橘子的图片问:起一个总的名称是什么? 2.出示:仿照第一题填空 (1)时间:3小时20分2小时45分 (2)总价:5元()() (3)():6千克800克3吨350克 填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗? 二、学习新课 (一)相关联的量 教师做实验,向弹簧称上加钩码问: (1)这其中有哪两种变化着的量?(2)弹簧长度为什么会变化? 指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。 追问:现在你知道什么叫相关联的量了吗?你能举例说明吗? (二)学习成正比例的量 1、出示19页表格 观察图像,填表,回答下面的问题: (1)表中有哪两个相关联的量? (2)正方形的周长是怎样随着边长的变化而变化的? (3)正方形的面积是怎样随着边长的变化而变化的? (4)它们的变化规律相同吗? 小组讨论交流汇报 2、20页第2题 3、正比例的意义 (1)例1和例2有什么共同点?(两种相关联的量,比值一定) 师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。 问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本 师板书关系式:y/x=k(一定) (2)要判断两种量是否成正比例的量该看什么呢? 三、巩固提高:19页说一说。 四、全课小结小学六年级数学《正比例》课件篇三 教学目标: 1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。 2、通过练习,巩固对正比例意义的认识。 3、情感、态度与价值观:初步渗透函数思想。 重点难点: 能根据数量关系式或图象判断两种量是否成正比例。 教学准备: 投影仪。 教学过程: 一、新课讲授 教学第46页内容。 教师出示表格(见书),依据表中的数据描点。(见书) 师:从图中你发现了什么? 生:这些点都在同一条直线上。 看图回答问题 ①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上? 你还能提出什么问题?有什么体会? 组织学生分小组汇报,学生汇报时可能会说出 ①正比例关系的图象是一条经过原点的直线。 ②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。 二、练习讲授 1、基本练习。 (1)投影出示教材第49页第1题。 教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。 教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。 师生共同订正。 (2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km…… ①出示下表,填表。 一列火车行驶的时间和路程 ②填表并思考发现了什么? ③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量) ④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。 ⑤用式子表示它们的关系:路程÷时间=速度(一定)。 教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。 2、指导练习。 (1)完成教材第49页第2题。 (2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。 (3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。 ②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。 提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。 三、课堂作业 1、根据x和y成正比例关系,填写表中的空格。 2、看图回答问题。 (1)在这一过程中,哪个量没变? (2)路程和时间有什么关系? (3)不计算,从图中看出4小时行驶多少千米? (4)7小时行驶多少千米? 课堂小结: 教师:判断两个相关联的量成正比例的三个要素是什么? 通过这节课的学习,你有什么收获? 课后作业: 完成练习册中本课时的练习。 板书设计: 正比例图像 图像:一条过原点的直线。

反比例函数课件

反比例函数的图像和性质教案(精选8篇) 在教学工作者实际的教学活动中,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?以下是我收集整理的反比例函数的图像和性质教案,供大家参考借鉴,希望可以帮助到有需要的朋友。 反比例函数的图像和性质教案 篇1 一、教材依据 人教版八年级第十七章《反比例函数》 二、设计思路 (一)教材分析 本节课讲述内容是在理解反比例函数的意义和概念、掌握了反比例函数的画法的基础上学习的,反比例函数的图象与性质的探索是对函数概念的深化,同时也是下一节反比例函数应用的基础,有了本节课的知识储备,便于学生利用函数的观点、数形结合的思想来处理问题和解释问题。 (二)教学方法 鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想通过教师引导,学生积极“探究——讨论——交流——总结”,同时在教学中通过演示,操作,观察,练习等师生的共同活动,让每个学生动手、动口、动眼、动脑,培养学生观察能力、直觉思维能力。 (三)学法指导 本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想,体会数形结合的思想。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。 三、教学目标 (一)知识目标 探索并掌握反比例函数的主要性质,逐步提高从函数图象获取信息的能力,体会数形结合的思想 (二)能力目标 通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力 (三)情感与价值观 让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲 四、教学重点 探索反比例函数的性质,体会数形结合的思想 五、教学难点 反比例函数的图象特点及性质的探索 六、教学准备 学生课前将函数图象画在黑板上(两个) 七、教学过程 反比例函数的图象与性质(二)教学案 (一)学习目标: 1、探究反比例函数的性质 2、体验数形结合的数学思想 (二)自学及学法指导: 1、用列表法画函数y=和的图象(学生课前板画在黑板上) 2、结合P41函数和的图象和黑板所画图象思考下列问题(小组讨论完成) (1)所画的图象是什么形状? (2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y随x的变化是如何变化的? (4)图象与x轴、y轴能相交吗?为什么? 3、归纳反比例函数的性质(小组轮流回答) (1)反比例函数(k为常数,k≠0)的图象是 (2)当k>0时,双曲线的两分支分别位于象限__在每个象限内,y值随x值的增大而___ (3)当k0和x<0的一些整数值。 师:(大屏幕投影)对应的y值分别是多少呢?(学生填表、口答答案。) 目的:让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。 师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点? 生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。 ①学生描点 ②教师利用多媒体课件演示描点的动画过程。 友情提醒:描点可要细心哦! 目的:让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。 师:如何把描出的点连接起来,从而画出它的图象呢? ①学生连接。 ②教师利用实物投影仪展示学生成果。 师:这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论) 生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。 师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式的点,比如横坐标在大于1小于2之间? 师:应当用什么样的线来连接呢? 生:应当用平滑的曲线顺次连接。 目的:师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数的图象。 2、猜想:反比例函数的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。 师:刚才,我们画出了k=6时,反比例函数的图象。请同学们猜想一下,k=-6时,反比例函数的图象在什么象限?为什么? 生:图象分布在二、四象限。由k=-6得xy=-6所以x、y异号所以反比例函数的图象分布在二、四象限。 3、师:请同学们画图验证自己的猜想。 4、①学生画图验证 ②相互交流成果检验自己的猜想是否正确。 目的:让学生先类比k=6时,反比例函数的图象的位置,猜想k=-6时,反比例函数的图象的位置;再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。 师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数的图象具有那些特征(学生分组讨论) 生:①一次函数的图象是一条直线,反比例函数的图象是由两个分支组成的,而且都是曲线; ②一次函数的图象与x、y轴有交点,反比例函数的图象与x、y轴没有交点; ③反比例函数的图象的两个分支关于原点成中心对称。 ④反比例函数的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点; 师:反比例函数的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。 设计目的:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。) 五、本节课你学到了什么?有哪些收获? 生:①画反比例函数的图象的方法 ②知道了反比例函数的图象是双曲线 ③反比例函数的图象不与坐标轴有交点 ④反比例函数的图象是中心对称图形   反比例函数的图像和性质教案 篇3 教学目标: 1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。 2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。 教学重点 运用反比例函数解决实际问题 教学难点 运用反比例函数解决实际问题 教学过程: 一、情景创设 引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢? 反比例函数在生活、生产实际中也有着广泛的应用。 例如:在矩形中S一定,a和b之间的关系?你能举例吗? 二、例题精析 例1、见课本73页 例2、见课本74页 例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米? 三、课堂练习 课本P74练习1、2题 四、课堂小结 反比例函数的应用 五、课堂作业 课本P75习题9.3第1、2题   反比例函数的图像和性质教案 篇4 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。 (3)(k0)还可以写成(k0)或xy=k(k0)的形式 三、例题的意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。   反比例函数的图像和性质教案 篇5 教学设计思想 本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。 教学目标 知识与技能 1.能灵活列反比例函数表达式解决一些实际问题。 2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。 过程与方法 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。 情感态度与价值观 体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。 教学重难点 重点: 掌握从实际问题中建构反比例函数模型。 难点: 从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。 教学方法 启发引导、合作探究 教学媒体 课件 教学过程设计 (一)创设问题情境,引入新课 [师]有关反比例函数的表达式,图像的特征我们都研究过了,我们学习它们的目的是什么呢? [生]是为了应用。 [师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。 问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。   反比例函数的图像和性质教案 篇6 一、教学设计思路 1.本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的'过程。 2.对教材的分析 (1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。 (2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。 (3)难点:探索并掌握反比例函数的主要性质。 二、教学过程 (一)作图象,试比较 1、提问: (1)=4/x是什么函数?你会作反比例函数的图象吗? (2)作图的步骤是怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。 2、按照上述方法作=—4/x的图象3、对照你所作的两个函数图象,找一下它们的相同点和不同点。 (二)细观察,找规律 1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。 2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。 3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。 (1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。 (2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。 (三)用规律,练一练 1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。 2、判断一位同学画的反比例函数的图象是否正确。 3、下列函数中,其图象位于第一、三象限 的有哪几个?在其图象所在象限内,的值随x的增大而增 大的有哪几个? (四)想一想,作小结 (五)作业 : 课本137页第1题、141页第2题   反比例函数的图像和性质教案 篇7 一、教学目标 1.利用反比例函数的知识分析、解决实际问题 2.渗透数形结合思想,提高学生用函数观点解决问题的能力 二、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题 2.难点:分析实际问题中的数量关系,正确写出函数解析式 三、例题的意图分析 教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。 教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。 补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题 四、课堂引入 寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?   反比例函数的图像和性质教案 篇8 教学目标: 1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题 2、能根据实际问题中的条件确定反比例函数的解析式。 3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。 教学重点、难点: 重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题 难点:根据实际问题中的条件确定反比例函数的解析式 教学过程: 一、情景创设: 为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题: (1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______。 (2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室; (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 二、新授: 例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。 (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务? (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系? (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字? 例2某自来水公司计划新建一个容积为的长方形蓄水池。 (1)蓄水池的底部S与其深度有怎样的函数关系? (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数) 三、课堂练习 1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数,当V=103时,=1.43g/3 (1)求与V的函数关系式; (2)求当V=23时求氧气的密度 2、某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,等于-0.8。 (1)求与x之间的函数关系式; (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)] 3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE,求与x之间的函数关系式及自变量x的取值范围。 四、 作业 30.3——1、2、3 ;

正比例函数PPT课件

【 #课件# 导语】课件是教学一篇课文的开场白,是教师在新课的开始阶段,从一定的目的出发,用很短的时间,并采取一定的方法或手段,激发学生学习新课的心理情绪的重要教学环节。下面是 考 网的后续更新吧!小学六年级数学《画一画》课件篇一 教学目标: 1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。 2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。 3、利用正比例关系,解决生活中的一些简单问题。 教学重点:目标1、2。 教学难点:目标2、3。 教学过程: 活动一;判断下面的量是否成正比例关系? 1、每行人数一定,总人数和行数。 2、长方形的长一定,面积和宽。 3、长方体的底面积一定,体积和高。 4、分子一定,分母和分数值。 5、长方形的周长一定,长和宽。 6、一个自然数和它的倒数。 7、正方形的边长与周长。 8、正方形的边长与面积。 9、圆的半径与周长。 10、圆的面积与半径。 11、什么样的两个量叫做成正比例的量? 活动二:探索一个数与它的5倍之间的关系。 1、求出一个数的5倍,在书上表格填写。 2、判断一个数的5倍和这个数有怎样的关系? 小结:一个数和它的5倍之间具有正比例关系。 3、请观察横轴表示什么?纵轴表示什么?根据上表说说各点表示的含义。 4、连接各点,你发现了什么? 5、利用书上的图,把下表填完整。 找一找这组数据在统计图上的位置,读出未知数据再算一算,比较两次结果。 活动三:试一试。 1、在下图中描点,表示第20页两个表格中的数量关系。 2、思考;连接各点,你发现了什么? 发现:所描的点都在同一条直线上。 活动四:练一练。 1、圆的半径和面积成正比例关系吗?为什么? 2、乘船的人数与所付船费为:(数据见书上) (1)将书上的图补充完整。 (2)说说哪个量没有变? (3)乘船人数与船费有什么关系? (4)连接各点,你发现了什么? 3、回答下列问题: (1)圆的周长与直径成正比例吗?为什么? (2)根据右图,先估计圆的周长,再实际计算。 (3)直径为5厘米的圆的周长估计值为(),实际计算值为()。 (4)直径为15厘米的圆的周长估计值为(),实际计算值为()。 4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上) 小学六年级数学《画一画》课件篇二 一、教材 《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。教材安排这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。 对于这一内容的设计,我结合实际主要确定了三个知识与技能的目标,即: 1、在具体情景中,通过“画一画”的活动,初步认识正比例图像; 2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值; 3、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。 确定了两个情感目标,即: 1、培养学生善于思考和积极参与的良好习惯; 2、培养学生学习数学的兴趣。 其中重难点目标是: 1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值; 2、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。 对于两个重难点目标,我将采取直观教学的形式(既PPT课件演示)和设计学生动手操作的练习题相结合,以此来分解难点,从而突破难点,化难为易。 二、教法 在教学中,我主要采用了直观教学法、启发式提问法、讲练结合法和激趣法。直观教学法就是利用PPT课件进行逐一演示,既演示解决问题的过程和方法,又演示解决问题的结果,使整个过程和方法都能清楚地展现在学生眼前,让学生更直观更形象地去感受和体验;启发式提问法能激起学生的学习兴趣,引导他们思考与交流如:横轴表示什么?纵轴表示什么?你发现了什么?;讲练结合法就是利用我设计的帮助学生进行探索和研究的练习题,让学生自己在练习题上进行动手操作,并在操作中独立思考,独立发现,把自己的发现写下来;激趣法就是在学生进行第一次研究得出结论后为了进一步验证我提出了激励性的问题鼓励学生进行两次探索与研究,如:真的是这样吗?我们继续来研究和探索……这样能激起学生的探索欲望和求知欲望,让学生觉得学得轻松,我也教得轻松,也增强了学生学习数学的兴趣。 三、学法 在教学中,我主要以学生的动手活动和交流活动为主,即让学生在练习纸上动手画一画,连一连,写一写。通过学生自己描点连线,自己发现问题,得出并写下来,然后在班上进行交流,学生很容易得出在交流中让学生体验到成功的喜悦,既培养了学生的动手能力、操作能力和观察能力,又培养学生善于思考和积极参与的良好习惯,学生的自学能力也就提高了。 四、教学程序设计 对于教学过程,我主要设计了五个步骤: 1、温故而知新。 我设计了两道题,都是用PPT课件展示出来,一是什么是正比例的填空题,二是判断两个相关联的两个量是不是成正比例。两道题的设计是为了让学生进一步认识什么是相关联的量和正比例的意义,能正确判断两个相关联的量是不是成正比例,既是复习旧知,也是为下一步学习作准备。这一过程主要采取学生独立——汇报交流——师生评价的方式。 2、初探尝试,引入新课。 首先用PPT课件展示出来,这一内容是教材第22页的内容,通过填表、说一说、连线、交流、展示等来揭示本节课的学习主题,提出悬念,激起学生的学习兴趣和探索欲望。 3、探索与研究。 这是本节课的主要内容,我结合实际安排了两个探索内容,是为了让学生通过探索与研究能更准确地从活动中得出更深刻的理解正比例图像的特点,同时也能根据正比例图像的特点更准确地进行描点、连线和估计。这一过程我主要采取了让学生动手画一画,连一连,写一写,说一说等方法让学生自己得出同时利用PPT课件进行展示,加深学生的认识和理解,从而达到本节课的前两个教学目标。 4、反馈练习。 我安排了3道题,一题是判断是否成正比例,二题和三题是有关正比例图像的练习以及利用正比例图像和正比例关系解决生活中的一些问题,既加深了学生对正比例图像的理解,又能培养学生的解决问题的能力,使学生体会到数学与生活的联系。练习题在我设计的题单中,同时我也利用PPT课件进行逐一展示,这样既保证了教学内容的完成,又能提高教学效益,使本节课的第3个教学目标得以完成,充分突破重点和难点。 5、课堂总结。 这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。小学六年级数学《画一画》课件篇三 教学目标: 1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。 2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。 3、利用正比例关系,解决生活中的一些简单问题。 教学重点: 会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。 教学难点: 利用正比例关系,解决生活中的一些简单问题。 教学准备: 多媒体课件 教学过程: 一、复习 师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。请同学们回忆一下,正比例要满足哪两个条件? 生:要满足两个条件 1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少; 2、两种量相对应的比值不变。 师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么? 生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。 师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画) (设计意图:复习上节课正比例的有关知识,导入本课。) 二、动手画图,理解含义。 填表,说一说表中两个量的关系。 一个数0、1、2、3、4、5、6、7、8、9、10 这个数的5倍 (1)学生填表。 (2)学生汇报。 (3)谁能说一说这两个量的关系。 这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。 (设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。) 三、试一试 1、在下图中描点,表示第20页两个表格中的数量关系。 2、思考:连接各点,你发现了什么? 生:所有的点在都在同一条直线上。 (设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。) 四、练一练 1、圆的半径和面积成正比例关系吗?为什么? 师:因为圆的面积和半径的比值不是一个常数。 师:请同学们观察课本上的图,看一看不成正比例的两个量所形成的的图形是不是一条直线? (设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。) 2、乘船的人数与所付船费为:(数据见书上) (1)将书上的图补充完整。 (2)说说哪个量没有变? (3)乘船人数与船费有什么关系? (4)连接各点,你发现了什么? 3、回答下列问题 (1)圆的周长与直径成正比例吗?为什么? (2)根据右图,先估计圆的周长,再实际计算。 (3)直径为5厘米的圆的周长估计值为(),实际计算值为()。 (4)直径为15厘米的圆的周长估计值为(),实际计算值为()。 4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上) (设计意图:通过以上练习,巩固所学。)

反比例函数的图象和性质课件

初中数学知识点归纳.有理数的加法运算同号两数来相加,绝对值加不变号.异号相加大减小,大数决定和符号.互为相反数求和,结果是零须记好.【注】“大”减“小”是指绝对值的大小.有理数的减法运算减正等于加负,减负等于加正.有理数的乘法运算符号法则同号得正异号负,一项为零积是零.合并同类项说起合并同类项,法则千万不能忘.只求系数代数和,字母指数留原样.去、添括号法则去括号或添括号,关键要看连接号.扩号前面是正号,去添括号不变号.括号前面是负号,去添括号都变号.解方程已知未知闹分离,分离要靠移完成.移加变减减变加,移乘变除除变乘.平方差公式两数和乘两数差,等于两数平方差.积化和差变两项,完全平方不是它.完全平方公式二数和或差平方,式它共三项.首平方与末平方,首末二倍中间放.和的平方加联结,先减后加差平方.完全平方公式首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方.解一元一次方程先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了.解一元一次方程先去分母再括号,移项合并同类项.系数化1还没好,准确无误不白忙.因式分解与乘法和差化积是乘法,乘法本身是运算.积化和差是分解,因式分解非运算.因式分解两式平方符号异,因式分解你别怕.两底和乘两底差,分解结果就是它.两式平方符号同,底积2倍坐中央.因式分解能与否,符号上面有文章.同和异差先平方,还要加上正负号.同正则正负就负,异则需添幂符号.因式分解一提二套三分组,十字相乘也上数.四种方法都不行,拆项添项去重组.重组无望试求根,换元或者算余数.多种方法灵活选,连乘结果是基础.同式相乘若出现,乘方表示要记住.【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数.五种方法都不行,拆项添项去重组.对症下药稳又准,连乘结果是基础.二次三项式的因式分解先想完全平方式,十字相乘是其次.两种方法行不通,求根分解去尝试.比和比例两数相除也叫比,两比相等叫比例.外项积等内项积,等积可化八比例.分别交换内外项,统统都要叫更比.同时交换内外项,便要称其为反比.前后项和比后项,比值不变叫合比.前后项差比后项,组成比例是分比.两项和比两项差,比值相等合分比.前项和比后项和,比值不变叫等比.解比例外项积等内项积,列出方程并解之.求比值由已知去求比值,多种途径可利用.活用比例七性质,变量替换也走红.消元也是好法,殊途同归会变通.正比例与反比例商定变量成正比,积定变量成反比.正比例与反比例变化过程商一定,两个变量成正比.变化过程积一定,两个变量成反比.判断四数成比例四数是否成比例,递增递减先排序.两端积等中间积,四数一定成比例.判断四式成比例四式是否成比例,生或降幂先排序.两端积等中间积,四式便可成比例.比例中项成比例的四项中,外项相同会遇到.有时内项会相同,比例中项少不了.比例中项很重要,多种场合会碰到.成比例的四项中,外项相同有不少.有时内项会相同,比例中项出现了.同数平方等异积,比例中项无处逃.根式与无理式表示方根代数式,都可称其为根式.根式异于无理式,被开方式无限制.被开方式有字母,才能称为无理式.无理式都是根式,区分它们有标志.被开方式有字母,又可称为无理式.求定义域求定义域有讲究,四项原则须留意.负数不能开平方,分母为零无意义.指是分数底正数,数零没有零次幂.限制条件不唯一,满足多个不等式.求定义域要过关,四项原则须注意.负数不能开平方,分母为零无意义.分数指数底正数,数零没有零次幂.限制条件不唯一,不等式组求解集.解一元一次不等式先去分母再括号,移项合并同类项.系数化“1”有讲究,同乘除负要变向.先去分母再括号,移项别忘要变号.同类各项去合并,系数化“1”注意了.同乘除正无防碍,同乘除负也变号.解一元一次不等式组大于头来小于尾,大小不一中间找.大大小小没有解,四种情况全来了.同向取两边,异向取中间.中间无元素,无解便出现.幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少.(大小小大就是它)大大小小解集空.(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站.判别式值若非负,曲线横轴有交点.A正开口它向上,大于零则取两边.代数式若小于零,解集交点数之间.方程若无实数根,口上大零解为全.小于零将没有解,开口向下正相反.用平方差公式因式分解异号两个平方项,因式分解有法.两底和乘两底差,分解结果就是它.用完全平方公式因式分解两平方项在两端,底积2倍在中部.同正两底和平方,全负和方相反数.分成两底差平方,方正倍积要为负.两边为负中间正,底差平方相反数.一平方又一平方,底积2倍在中路.三正两底和平方,全负和方相反数.分成两底差平方,两端为正倍积负.两边若负中间正,底差平方相反数.用公式法解一元二次方程要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之.用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题.该种解法叫配方,解方程时多练习.用间接配方法解一元二次方程已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势【注】恒等式解一元二次方程方程没有一次项,直接开方最理想.如果缺少常数项,因式分解没商量.b、c相等都为零,等根是零不要忘.b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方.正比例函数的鉴别判断正比例函数,检验当分两步走.一量表示另一量,初中数学口诀上海市同洲模范学校宋立峰有理数的加法运算同号两数来相加,绝对值加不变号.异号相加大减小,大数决定和符号.互为相反数求和,结果是零须记好.【注】“大”减“小”是指绝对值的大小.有理数的减法运算减正等于加负,减负等于加正.有理数的乘法运算符号法则同号得正异号负,一项为零积是零.合并同类项说起合并同类项,法则千万不能忘.只求系数代数和,字母指数留原样.去、添括号法则去括号或添括号,关键要看连接号.扩号前面是正号,去添括号不变号.括号前面是负号,去添括号都变号.解方程已知未知闹分离,分离要靠移完成.移加变减减变加,移乘变除除变乘.平方差公式两数和乘两数差,等于两数平方差.积化和差变两项,完全平方不是它.完全平方公式二数和或差平方,式它共三项.首平方与末平方,首末二倍中间放.和的平方加联结,先减后加差平方.完全平方公式首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方.解一元一次方程先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了.解一元一次方程先去分母再括号,移项合并同类项.系数化1还没好,准确无误不白忙.因式分解与乘法和差化积是乘法,乘法本身是运算.积化和差是分解,因式分解非运算.因式分解两式平方符号异,因式分解你别怕.两底和乘两底差,分解结果就是它.两式平方符号同,底积2倍坐中央.因式分解能与否,符号上面有文章.同和异差先平方,还要加上正负号.同正则正负就负,异则需添幂符号.因式分解一提二套三分组,十字相乘也上数.四种方法都不行,拆项添项去重组.重组无望试求根,换元或者算余数.多种方法灵活选,连乘结果是基础.同式相乘若出现,乘方表示要记住.【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数.五种方法都不行,拆项添项去重组.对症下药稳又准,连乘结果是基础.二次三项式的因式分解先想完全平方式,十字相乘是其次.两种方法行不通,求根分解去尝试.比和比例两数相除也叫比,两比相等叫比例.外项积等内项积,等积可化八比例.分别交换内外项,统统都要叫更比.同时交换内外项,便要称其为反比.前后项和比后项,比值不变叫合比.前后项差比后项,组成比例是分比.两项和比两项差,比值相等合分比.前项和比后项和,比值不变叫等比.解比例外项积等内项积,列出方程并解之.求比值由已知去求比值,多种途径可利用.活用比例七性质,变量替换也走红.消元也是好法,殊途同归会变通.正比例与反比例商定变量成正比,积定变量成反比.正比例与反比例变化过程商一定,两个变量成正比.变化过程积一定,两个变量成反比.判断四数成比例四数是否成比例,递增递减先排序.两端积等中间积,四数一定成比例.判断四式成比例四式是否成比例,生或降幂先排序.两端积等中间积,四式便可成比例.比例中项成比例的四项中,外项相同会遇到.有时内项会相同,比例中项少不了.比例中项很重要,多种场合会碰到.成比例的四项中,外项相同有不少.有时内项会相同,比例中项出现了.同数平方等异积,比例中项无处逃.根式与无理式表示方根代数式,都可称其为根式.根式异于无理式,被开方式无限制.被开方式有字母,才能称为无理式.无理式都是根式,区分它们有标志.被开方式有字母,又可称为无理式.求定义域求定义域有讲究,四项原则须留意.负数不能开平方,分母为零无意义.指是分数底正数,数零没有零次幂.限制条件不唯一,满足多个不等式.求定义域要过关,四项原则须注意.负数不能开平方,分母为零无意义.分数指数底正数,数零没有零次幂.限制条件不唯一,不等式组求解集.解一元一次不等式先去分母再括号,移项合并同类项.系数化“1”有讲究,同乘除负要变向.先去分母再括号,移项别忘要变号.同类各项去合并,系数化“1”注意了.同乘除正无防碍,同乘除负也变号.解一元一次不等式组大于头来小于尾,大小不一中间找.大大小小没有解,四种情况全来了.同向取两边,异向取中间.中间无元素,无解便出现.幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少.(大小小大就是它)大大小小解集空.(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站.判别式值若非负,曲线横轴有交点.A正开口它向上,大于零则取两边.代数式若小于零,解集交点数之间.方程若无实数根,口上大零解为全.小于零将没有解,开口向下正相反.用平方差公式因式分解异号两个平方项,因式分解有法.两底和乘两底差,分解结果就是它.用完全平方公式因式分解两平方项在两端,底积2倍在中部.同正两底和平方,全负和方相反数.分成两底差平方,方正倍积要为负.两边为负中间正,底差平方相反数.一平方又一平方,底积2倍在中路.三正两底和平方,全负和方相反数.分成两底差平方,两端为正倍积负.两边若负中间正,底差平方相反数.用公式法解一元二次方程要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之.用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题.该种解法叫配方,解方程时多练习.用间接配方法解一元二次方程已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势【注】恒等式解一元二次方程方程没有一次项,直接开方最理想.如果缺少常数项,因式分解没商量.b、c相等都为零,等根是零不要忘.b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方.正比例函数的鉴别判断正比例函数,检验当分两步走.一量表示另一量,是与否.若有还要看取值,全体实数都要有.正比例函数是否,辨别需分两步走.一量表示另一量,有没有.若有再去看取值,全体实数都需要.区分正比例函数,衡量可分两步走.一量表示另一量,是与否.若有还要看取值,全体实数都要有.正比例函数的图象与性质正比函数图直线,经过和原点.K正一三负二四,变化趋势记心间.K正左低右边高,同大同小向爬山.K负左高右边低,一大另小下山峦.一次函数一次函数图直线,经过点.K正左低右边高,越走越高向爬山.K负左高右边低,越来越低很明显.K称斜率b截距,截距为零变正函.反比例函数反比函数双曲线,经过点.K正一三负二四,两轴是它渐近线.K正左高右边低,一三象限滑下山.K负左低右边高,二四象限如爬山.二次函数二次方程零换y,二次函数便出现.全体实数定义域,图像叫做抛物线.抛物线有对称轴,两边单调正相反.A定开口及大小,线轴交点叫顶点.顶点非高即最低.上低下高很显眼.如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选.列表描点后连线,平移规律记心间.左加右减括号内,号外上加下要减.二次方程零换y,就得到二次函数.图像叫做抛物线,定义域全体实数.A定开口及大小,开口向上是正数.绝对值大开口小,开口向下A负数.抛物线有对称轴,增减特性可看图.线轴交点叫顶点,顶点纵标最值出.如果要画抛物线,描点平移两条路.提取配方定顶点,平移描点皆成图.列表描点后连线,三点大致定全图.若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础.【注】基础抛物线直线、射线与线段直线射线与线段,形状相似有关联.直线长短不确定,可向两方无限延.射线仅有一端点,反向延长成直线.线段定长两端点,双向延伸变直线.两点定线是共性,组成图形最常见.角一点出发两射线,组成图形叫做角.共线反向是平角,平角之半叫直角.平角两倍成周角,小于直角叫锐角.直平之间是钝角,平周之间叫优角.互余两角和直角,和是平角互补角.一点出发两射线,组成图形叫做角.平角反向且共线,平角之半叫直角.平角两倍成周角,小于直角叫锐角.钝角界于直平间,平周之间叫优角.和为直角叫互余,互为补角和平角.证等积或比例线段等积或比例线段,多种途径可以证.证等积要改等比,对照图形看特征.共点共线线相交,平行截比把题证.三点定型十分像,想法来把相似证.图形明显不相似,等线段比替换证.换后结论能成立,原来命题即得证.实在不行用面积,射影角分线也成.只要学习肯登攀,手脑并用无不胜.解无理方程一无一有各一边,两无也要放两边.乘方根号无踪迹,方程可解无负担.两无一有相难,两次乘方也好.特殊情况去换元,得解验根是必然.解分式方程先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊.列方程解应用题列方程解应用题,审设列解双检答.审题弄清已未知,设元直间两法.列表画图造方程,解方程时守章法.检验准且合题意,问求同一才作答.添加辅助线学习几何体会深,成败也许一线牵.分散条件要集中,常要添加辅助线.畏惧心理不要有,其次要把观念变.熟能生巧有规律,真知灼见靠实践.图中已知有中线,倍长中线把线连.旋转构造全等形,等线段角可代换.多条中线连中点,便可得到中位线.倘若知角平分线,既可两边作垂线.也可沿线去翻折,全等图形立呈现.角分线若加垂线,等腰三角形可见.角分线加平行线,等线段角位置变.已知线段中垂线,连接两端等线段.辅助线必画虚线,便与原图联系看.两点间距离公式同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形.已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形.菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

反比例函数图像与性质第一课时课件

1)正比例函数:y=kx(k≠0,k为常数),图像是一条过原点的直线

2)反比例函数:y=k/x(k≠0,k为常数),图像是双曲线。

若k

>0,图像在一三象限,若k<0,图像在二四象限。

3)一次函数:y=kx+b(k≠0,k,b为常数),图像是一条直线

其中k决定倾斜方向,k

>0,图像沿一三象限倾斜,,若k<0,图像沿二四象限倾斜。

b决定与y轴交点

4)二次函数:y=ax+bx+c(a≠0,a,b,c为常数),图像是抛物线

其中a:决定开口方向,a大于0时,开口向上,a小于0时,开口向下

b:与a合作决定对称轴x=-b/2a,a,b同号,对称轴在y轴左侧,a,b异号,对称轴在y轴右侧,

c:决定与y轴的交点。c大于0时,直线与y轴的交点在y轴的正半轴上,c小于0时,直线与y轴的交点在y轴的负半轴上,c等于0时,直线与y轴的交点原点。

b-4ac:决定与x轴的交点个数,大于0时,与x轴有两个交点,等于0时,与x轴有一个交点,小于0时,与x轴没有交点,

a+b+c:当x=1时的函数值。a-b+c:当x=-1时的函数值

4a+2b+c:当x=2时的函数值.4a-2b+c:当x=-2时的函数值

以上是小编为大家整理的关于“正比例函数2课件(反比例函数课件)”的具体内容,今天的分享到这里就结束啦,如果你还想要了解更多资讯,可以关注或收藏我们的网站,还有更多精彩内容在等你。