hello大家好,我是本站的小编子芊,今天来给大家介绍一下北师大八年级数学课件(北师大八下数学课本PDF)的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

北师大八年级数学课件(北师大八下数学课本PDF)是一份非常有用的学习资料。这份课件对于帮助八年级学生提高数学水平具有很大的帮助。

北师大八年级数学课件

这份课件内容详实且系统。它根据北师大八下数学课本的内容编写而成,涵盖了各个章节和知识点。每个章节都有相应的课件,通过课件的学习,学生可以系统地掌握每个章节的重点知识。课件中不仅包括了基础知识的讲解,还有大量的例题和习题,有助于学生巩固所学的知识。

这份课件形式多样,易于理解。课件中用图文并茂的方式来讲解知识点,结合具体的例子和实际问题,让学生更加直观地了解数学知识的应用。课件还配有动画和互动题目,使学习更加生动有趣。这种多媒体的学习方式可以激发学生的学习兴趣,提高学习的效果。

这份课件还有很多附加资源。课件中提供了一些习题的解答和答案,学生可以通过对比自己的答案来检验自己的做题情况,及时发现和纠正错误。课件中还有一些扩展性的、挑战性的题目,可以帮助学生提高解题能力和探索数学的兴趣。

北师大八年级数学课件(北师大八下数学课本PDF)是一份很好的学习资料。它的内容全面、形式多样、易于理解,可以帮助八年级学生更好地掌握数学知识。希望学生们能充分利用这份课件,提高数学水平,取得更好的成绩。

北师大八年级数学课件(北师大八下数学课本PDF)

北师大版八年级上册数学课件分享,一起来看看吧。 探索勾股定理(第1课时) 一、学生起点分析 八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强. 二、教学任务分析 本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值. 为此本节课的教学目标是: 1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用. 2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法. 3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系. 4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习. 三、教学过程设计 本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业. 第一环节:创设情境,引入新课 内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题) 意图:紧扣课题,自然引入,同时渗透爱国主义教育. 效果:激发起学生的求知欲和爱国热情. 第二环节:探索发现勾股定理 1.探究活动一 内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现: 结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫. 效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二 内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图: (2)填表: A的面积 (单位面积)B的面积 (单位面积)C的面积 (单位面积) 左图 右图 (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.) 学生的方法可能有: 方法一: 如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, . 方法二: 如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, . 方法三: 如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出: 结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节. 效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2. 3.议一议 内容:(1)你能用直角三角形的边长 , , 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗? (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗? 勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 , , 分别表示直角三角形的两直角边和斜边,那么 . 数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理) 意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理. 效果:1.让学生归纳表述可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力. 第三环节:勾股定理的简单应用 内容: 例题 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少? (教师板演解题过程) 练习: 1.基础巩固练习: 求下列图形中未知正方形的面积或未知边的长度(口答): 2.生活中的应用: 小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 意图:练习第1题是勾股定理的直接运用,意在巩固基础知识. 效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容. 第四环节:课堂小结 内容: 教师提问: 1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同 1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 , , 分别表示直角三角形的两直角边和斜边,那么 . 2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法. 3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想. 意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动. 效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.

北师大版数学八年级

北师大的内容稍微比人教版的少了一些,但是比人教版的难了许多,顺序好象都差不多的,就是有些乱。就是把学的东西在三年内打乱顺序,难易好象差不多,要学的都一样,不过人教的偏散。数学人教版初一已经把初二北师大版的好多内容都学了.人教版的相对内容简单了,但知识面却广了很多.课程顺序变化最大.

拓展资料:

人教社最新版的初中数学教材确实让人眼前一亮,主要的优点是:

1)教材结构严谨,初中数学主要内容的先后顺序安排得当,充分尊重数学概念发生、发展的过程。

2)文字叙述严谨。不仅仅是证明范例的书写严谨;如果读者仔细斟酌各版教材的用词,应该说,人教版是最为严谨的,经不起推敲的字句最少。

3)便于预习和自学。人教版讲的比较细致,从问题产生,到抽象出数学模型,再到解决方法,归纳整理,按照这个逻辑顺序完整呈现。

缺点是:

1)大段叙述太多,可能对于初中生来说较难接受。

2)有时一段话内要呈现好几个概念,显得知识点过于密集。

北师大版教材保持其一贯的优点:

1)结合实际,贴近生活。插图比人教版丰富,更能吸引学生。

2)讲的内容比人教版多。从这个角度讲,学生平常见识得越多,中考就越占优势。

北师大版教材的致命缺点是内容编排非常混乱。体现在以下几个方面:

1)部分内容编排不符合学生认知年龄。

2)部分内容不符合教学实际。

“人教版”一般是就教科书意义而言的,是相对于其他出版社出版的教科书而言的。如长春出版社出版的教科书称为“长春版”、广东教育出版社出版的教科书称为“粤教版”、上海教育出版社出版的教科书称为“沪教版”。可见所谓“人教”指的是“人民教育出版社”,所谓“版”指的是教科书版本,而非“出版社”的“版”。

“人教版”指的是由人民教育出版社出版的教科书版本。比如我国中小学教育辅导报刊中,《语文报》、《中学生学习报》、《学苑新报》等均有着不同版本的教辅报纸,诸如人教大纲版、人教新课标版等。

这两个版本名称均是配合由人民教育出版社出版的教科书的报纸,是新课改前后的版本名称。随着新课改的深入,前者逐渐退出历史舞台,后者便统一称为人教版。本套教科书是由课程教材研究所与xx(科目)课程教材研究开发中心编著,由新华书店集团发行。

"传播科学真理,宏扬文化精义",是北京师范大学出版社孜孜追求的目标。北师大出版社始终不遗余力,广纳名家,打造精品,出版了一批以《启功讲学录》、《红楼梦(校注本)》、《中国数学史大系》、《中华艺术通史》、《20世纪全球文学经典珍藏》、《心理学大辞典》、《康熙字典》、《朱智贤全集》、《汪曾祺全集》、《林斤澜文集》、《教育经济研究丛书》、《世界课程改革趋势研究》、《当代中国哲学家文库》、《当代中国史学家文库》等为代表的学术精品,形成了较强的学术影响力和社会辐射力。

参考资料:百度百科-人教版 百度百科-北京师范大学出版社

北师大八下数学课本PDF

《【初中之友】数学电子课本》百度网盘资源免费下载链接: https://pan.baidu.com/s/1McZEoB8moZwWbE6cG1QC3w

?pwd=ed4d 提取码: ed4d 【初中之友】数学电子课本|人教版数学七年级下册.pdf|人教版数学九年级下册电子课本.pdf|人教版八年级数学(下册)教材高清版.pdf|更多资料关注语文视窗、数学视野、初中之友.png

北师大版八年级上册数学第一章课件

北师大版的数学课本有什么特点? 八年级 的数学第一章主要讲什么内容?老师的教案又应该怎样做?下面是由我整理的北师大版八年级上册第一章数学教案,希望对您有用。北师大版八年级上册第一章数学教案:探索勾股定理(一) 教学目标:1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现教学过程一、 创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示投影2 (书中的P2 图1—2)并回答:1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。正方形B中有_______个小方格,即A的面积为______个单位。正方形C中有_______个小方格,即A的面积为______个单位。2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、 图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、 做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、 从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师 总结 :以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。三、 议一议1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、 你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么abc我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、 想一想这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?五、 巩固练习1、 错例辨析:△ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足c34=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足abc,题目中并为交待C 是斜边综上所述这个题目条件不足,第三边无法求得。2、 练习P7 §1.1 1六、 作业课本P7 §1.1 2、3、4北师大版八年级上册第一章数学教案:探索勾股定理(二) 教学目标:1. 经历运用拼图的 方法 说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。2. 掌握勾股定理和他的简单应用重点难点:重点: 能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程七、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能:(1)(ab) (2)221ab4c2 ) 2在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。a2b2=1ab4c2 请同学们对上面的式子进行化简,得到: 2a22abb22abc2 即 a2b2=c2这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。八、讲例1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的c90,AC4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。解:由勾股定理得BC2AB2AC252429(千米)即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:36003540(千米/小时) 20答:飞机每个小时飞行540千米。九、 议一议展示投影2(书中的图1—9)观察上图,应用数格子的方法判断图中的三角形的三边长是否满足abc同学在议论交流形成共识之后,老师总结。勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。十、作业1、 1、课文 P11§1.2 1 、22、 选用作业。

初二下北师大数学

教材在 八年级 数学教学中的地位是举足轻重的。其中目录收录了什么知识呢?我整理了关于北师大版八年级下册数学目录,希望对大家有帮助!北师大版八年级下册数学教材目录 第一章 三角形的证明1. 等腰三角形2. 直角三角形3. 线段的垂直平分线4. 角平分线回顾与思考复习题第二章 一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章 图形的平移与旋转1. 图形的平移2. 图形的旋转3. 中心对称4. 简单的图案设计回顾与思考复习题第四章 因式分解1. 因式分解2. 提公因式法3. 公式法回顾与思考复习题第五章 分式与分式方程1. 认识分式2. 分式的乘除法3. 分式的加减法4. 分式方程回顾与思考复习题第六章 平行四边形1. 平行四边形的性质2. 平行四边形的判定3. 三角形的中位线4. 多边形的内角和与外角和回顾与思考复习题综合与实践⊙ 生活中的“一次模型”综合与实践⊙ 平面图形的镶嵌总复习八年级数学知识点:一元一次不等式与一元一次不等式组 一、不等关系定义:一般地,用符号“”(或“≥”)连接的式子叫做不等式.与方程的区别:方程表示的是相等的关系;不等式表示的是不相等的关系.备注:准确“翻译”不等式,正确理解“非负数”“不小于”“不大于”“至多”“至少”等数学术语.二、不等式的基本性质●不等式的两边都加(或减)同一个整式,不等号的方向不变,即如果a>b,那么ac>bc;●不等式的两边都乘(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或>);●不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac

以上是小编为大家整理的关于“北师大八年级数学课件(北师大八下数学课本PDF)”的具体内容,今天的分享到这里就结束啦,如果你还想要了解更多资讯,可以关注或收藏我们的网站,还有更多精彩内容在等你。