各位老铁们,大家好,今天小编来为大家分享九年级数学课件(数学九年级上册内容)相关知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

九年级数学课件(数学九年级上册内容)

九年级数学课件

数学作为一门科学,不仅仅是我们学生在学校必修的一门课程,更是一种思维方式和解决问题的工具。九年级的数学课程内容更加深入和广泛,帮助学生打好数学基础,培养逻辑思维和数学思维能力。

数学九年级上册内容涵盖了多个重要的数学学科,如代数、几何、概率等。代数部分包括了线性方程、二次方程和函数等内容。通过学习线性方程,我们可以掌握解方程和应用方程的方法,例如解决实际问题中的相关性和比例关系。而二次方程则是我们探索更复杂数学问题的基石,通过解二次方程,我们可以了解到曲线的性质和方程的根的特点。函数则是代数中的重要概念,是建立数学模型和解决实际问题的工具,通过函数的研究,我们可以探索数学规律和发现数学奥秘。

几何部分包括了平面几何和立体几何。在平面几何中,我们学习了平面图形的性质和计算方法,例如面积、周长和角度等。通过学习平行四边形、三角形和圆等形状的性质,我们可以解决实际生活中的测量和计算问题。而在立体几何中,我们学习了立体图形的性质和计算方法,例如体积和表面积等。通过学习长方体、圆柱体和球体等形状的性质,我们可以应用在建筑和设计等领域中。

概率部分是数学中的一门特殊学科,它研究的是随机事件的发生概率。通过学习概率,我们可以了解到事件发生的可能性和统计规律。例如掷骰子、抽卡片等随机事件,通过计算概率,我们可以预测事件发生的结果和制定合理的决策。

九年级数学课件内容丰富多样,通过学习这些知识,我们可以培养学生的逻辑思维能力和数学思维能力,提高解决问题的能力和方法。数学不仅仅是一门课程,更是一种思维方式,帮助我们探索世界的奥秘。让我们一起努力学好数学,用数学的力量改变世界!

九年级数学课件(数学九年级上册内容)

人教版九年级数学上册全套课件及配套教案,内容很多,这里无法全部复制,请到“人教版九年级数学上册全套课件及配套教案 site:flyedu.cn”下 载.第二十一章 二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).(3)掌握·=(a≥0,b≥0),=·;

=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式

第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、、、-、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,+在实数范围内有意义?分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.

七、教学反思:需注意中a的范围,以及的范围。

九年级数学上册课件

圆的内容是初中数学重要的内容,以下是我为大家准备的九年级上册数学圆课件,仅供参考!    九年级上册数学圆课件 一 【教材分析】 地位和作用:本节课是人教版九年级上册24章第2节的第3课时,是学生已掌握了点与圆、直线与圆的位置关系等知识的基础上,来研究平面上两圆的不同位置关系,是学生对圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,球与球的位置关系的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 二 【教学目标】 知识技能目标: 1、探索并了解圆与圆的位置关系。 2、探索圆与圆的位置关系中两圆圆心距与两圆半径间的数量关系。 3、能够利用圆与圆的位置关系和数量关系解题。 过程与方法: 学生经历探索圆与圆的位置关系的过程,培养学生的观察、分析、归纳、概括的能力;学会 “类比”、“分类讨论”、“数形结合”的数学思想;提高运用知识和技能解决问题的能力,发展应用意识。 情感态度目标: 学生经过操作、实验、确认等数学活动,体会运动变化的观点,量变产生质变的辨证唯物主义观点,感受数学中的美感。 教学重点与难点: 教学重点:探索并了解圆和圆的位置关系。 教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。 三【教法与学法分析】 1、课堂上本着人人学有用的数学,人人获得有价值的数学的新课程理念,从生活中的图形实例出发引入新课,并用动画演示,直观形象的展示圆与圆的位置关系,经过探索、讨论、观察、总结 、再运用的学习过程,逐步深入地探索知识和掌握知识,非常符合这个年龄段学生的认知特点; 2、改生硬的传授和呆板的讲课,着眼于直观感知和操作认识,从学生熟悉的实际出发,让学生看一看、想一想认识图形的主要特征与图形变化的基本性质,学会识别不同的圆与圆的位置关系的图形; 3、在课堂上赋予适当的教学说理,达到把知识由浅入深;从无规律到有规律;从直观认识到理性认识的数学学习过程,培养学生一定的合理推理能力以及增强学生的严密的思考能力,同时培养学生适当的数学素养。 四【教学程序设计】 1.创设情境,激发兴趣 2.提出问题,引导探究 3.动画演示,探索新知 4.归纳总结,整体感知 5.应用新知,拓展提高 6.布置作业,巩固加深 五【教学过程】 1.创设情境,激发兴趣 设计意图:引导学生欣赏图片,激发学生对探索两圆位置关系的兴趣,由此引入到要研究的课题。(课件展示) 2.提出问题,引导探究 探究1:直线与圆的位置关系的几何特征是通过公共点来刻画的,请同学们猜想一下,圆与圆的位置关系按公共点分类能分成几类? 动手操作;在事先准备好的两张透明的纸上画两个半径不同的⊙O1和⊙O2,把两张纸叠合在一起,固定其中一张而移动另一张,你能发现⊙O1和⊙O2有几种不同的位置关系?每种位置关系中两圆有多少个公共点? 设计意图:让学生亲自动手实验,参与数学活动。 3.动画演示,探索新知 设计意图:是让学生运用运动变化的观点观察两圆的位置关系的变化及公共点个数的变化情况,学会用类比和分类讨论的方法去研究两圆的位置关系。 学以致用 1.2008北京奥运会自行车比赛会标在图中两圆的位置关系是_____ 2.在图中有两圆的多种位置关系,请你找出还没有的位置关系是__ 3.请你指出生活中图片蕴含的圆和圆的位置关系( 图形在课件上) 设计意图:是让学生学会用数学语言表述问题,体会数学来源于生活,并服务于生活,增强应用意识。 探究2:影响直线与圆位置关系的数量因素是半径和圆心到直线的距离,那么影响圆与圆的位置关系的数量因素是什么? 探究2 是本节课的重点内容,教学中通过课件的动画演示,让学生探索出不同位置关系时两圆的圆心距(d)和两圆的半径(R和r)的数量关系。(观看课件动画) 设计意图:利用多媒体动画演示让学生直观形象地观察圆与圆的位置关系,学生能轻松的从数量关系的角度来探索两圆的位置关系,突破难点,体会数形结合的数学思想。 4.归纳总结,整体感知 通过前面的教学让同学们自己填写下表: 圆与圆的位置关系 位置关系 图形 交点个数 d与R、r的关系 (R>r) d>R+r d=R-r 设计意图:采用表格形式,将知识点归纳,通过表格很容易看出圆与圆的位置关系的分类情况,体会数形结合思想,以及两圆位置关系的判定方法,让学生形成清晰、系统、完整的知识网络。 5.应用新知,拓展提高 例1:如图,⊙0的半径为5cm,点P是⊙0外一点,OP=8cm, 求:(1)以P为圆心,作⊙P与⊙O外切,小圆P的半径是多少? (2)以P为圆心,作⊙P与⊙O内切,大圆P的半径是多少? 练习:圆O1和圆O2的半径分别为3厘米和4厘米,下列情况下两圆的位置关系是怎样? (1) O1O2=8厘米 (2)O1O2=7厘米 (3)O1O2=5厘米 (4)O1O2=1厘米 (5)O1O2=0.5厘米 (6)O1和O2重合 设计意图:利用两圆位置关系与圆心距和半径之间的数量关系来解决问题。培养学生应用知识的能力。 6.归纳布置作业 1)问题:回顾本节课的探究过程,我们懂得了哪些新知识,学会了哪些方法? 2)布置作业:A:课本习题14.3中第1、4、6题。 B :课余探索:和圆O1(半径为2)圆O2(半径为1)都相切且半径为3的圆共有几个? 设计意图:通过总结回顾本节内容,帮助学生学会归纳,反思,培养科学的认知习惯。作业布置注重了分层,让探究延伸到课外。 六【教学评价】 1. 本节课的设计,我从生活中的图形实例出发引入新课,运用动画演示,直观形象地展示圆与圆的位置关系。让同学们经过探索、讨论、观察、总结得出结论。 2. 采用表格的形式将圆与圆的位置关系分类列出,既体现了分类思想,又体现了数形结合思想;把知识由浅入深,从直观认识到理性认识的数学学习过程,是学生真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。 3. 通过课后作业的完成情况,进一步了解学生对圆与圆的位置关系的理解和掌握的程度。教师根据这些评价结果做出相应的反馈和调节,调整设计下节课或下阶段的教学内容,以达到尽可能好的教学效果。 板书设计: 位置关系 图形 交点个数 d与R、r的关系 (R>r) d >R+r d =R-r 圆与圆的位置关系

初三中考模拟试卷电子版

中考刷题可以买以下试卷:

五年高考三年模拟:这套试卷堪称是全国范围内最权威的初高中数学试题集之一,包含大量真题和模拟题。

天利38套:这套试卷同样包含全国各地区的真题和模拟题,但题目难度相对较低,适合基础薄弱的学生使用。

金考卷:这套试卷包含了各省市的历年中考真题和一些模拟题,题目难度较为均衡,适合中等程度的学生使用。

名校模拟卷:这套试卷集合了全国各地区的名校模拟题,题目的难度和深度都比较高,适合优秀的学生挑战。

中考真题卷:中考真题卷是中考前必刷的试卷,可以帮助学生更好地了解中考题型和难度,提高应试能力。

刷题不是目的,而是手段。在刷题过程中,要注重思考、总结、归纳,不断提高自己的解题能力和思维能力。不要陷入“题海战术”的误区,要学会分析试题,掌握解题方法,做到举一反三。

数学九年级上册内容

九年级上册数学期末基础知识复习

二次根式

知识点1.二次根式 重点:掌握二次根式的概念。 难点:二次根式有意义的条件

式子(a≥0)叫做二次根式.知识点 2.最简二次根式

重点:掌握最简二次根式的条件[来源:学.难点:正确分清是否为最简二次根式

同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.

知识点3.同类二次根式

重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.

知识点4.二次根式的性质

重点:掌握二次根式的性质 难点:理解和熟练运用二次根式的性质

①()2=a(a≥0);②=│a│=;

知识点5.分母有理化及有理化因式重点:掌握分母有理化及有理化因式的概念

难点:熟练进行分母有理化,求有理化因式

把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式.

例观察下列分母有理化的计算:,从计算结果中找出规律,并利用这一规律计算:=_____________

解题思路:知识点6.二次根式的运算

重点:掌握二次根式的运算法则 难点:熟练进行二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.

(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.

最新考题中考要求及命题趋势1、掌握二次根式的有关知识,包括概念,性质、运算等;2、熟练地进行二次根式的运算一 元 二 次 方 程

一、知识结构:

一元二次方程:概念、解与解法、实际应用、根与系数的关系。

二、考点精析

考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。

(2)一般表达式:⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;

③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

例2、方程是关于x的一元二次方程,则m的值为 。

考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值;

典型例题:例1、已知的值为2,则的值为

考点三、解法

⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次

类型一、直接开方法:※※对于,等形式均适用直接开方法

典型例题:例1、解方程:=0; 例2、若,则x的值为 。

类型二、因式分解法:※方程特点: 左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如,,典型例题:例1、的根为( )A .B .C .D.例2、若,则4x+y的值为 。

类型三、配方法※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:试用配方法说明的值恒大于0。

类型四、公式法⑴条件:⑵公式: ,典型例题: 例1、选择适当方法解下列方程:

⑴⑵⑶类型五、 “降次思想”的应用

⑴求代数式的值; ⑵解二元二次方程组。

典型例题:已知,求代数式的值。

考点四、根的判别式根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是 。

考点五、方程类问题中的“分类讨论”

典型例题: 例1、讨论关于x的方程根的情况。

考点六、应用解答题

⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;

⑷“最值”型问题;⑸“图表”类问题

典型例题:

1、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。

(1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?

考点七、根与系数的关系

⑴前提:对于而言,当满足①、②时,

才能用韦达定理。

⑵主要内容:⑶应用:整体代入求值。

典型例题:例1、已知关于x的方程有两个不相等的实数根,

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。旋转知识网络图表图案设计识别及应用关于原点对称的点的坐标中心对称中心对称图形图形旋转平移及性质平移及性质旋转及性质(1)

中心对称:把一个图形绕某一点旋转,如果能与另一个图形重合.这个点叫对称中心,这两个图形中的对应点关于这一点对称.(2)

关于旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等。第1题. 下列是中心对称图形的有(  )(1)线段;(2)角;(3)等边三角形;(4)正方形;(5)平行四边形;(6)矩形;(7)等腰梯形.A.2个 B.3个 C.4个 D.5个

答案:C.第5题. 在线段、射线、两条相交直线、五角星中,是中心对称图形的个数为(  )A.1个 B.2个 C.3个 D.4个 答案:B.圆一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角 ∠ AOB ;圆周角∠

ACB ; (2)如图,已知∠AOB=50度,则∠ACB= 25

度; (3)在上图中,若AB是圆O的直径,则∠AOB= 180

度;则∠ACB= 90

度;2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条

过圆心 的直线;圆是中心对称图形,对称中心为 圆心 .(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,∵CD是圆O的直径,CD⊥AB于E∴ = , = 3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ;4、直线和圆的位置关系有三种:相 、相 、相 .5、圆与圆的位置关系:6、切线性质:例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠ ;7、圆中的有关计算(1)弧长的计算公式:例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少?解:因为扇形的弧长=所以== (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少?解:因为扇形的面积S= 所以S== (答案保留π)②若扇形的弧长为12πcm,半径为6㎝,则这个扇形的面积是多少?解:因为扇形的面积S= 所以S= = ( 3)圆锥:例7:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积= 概率初步【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,① 必然事件发生的概率为1,即P(必然事件)=1;② 不可能事件发生的概率为0,即P(不可能事件)=0;③ 如果A为不确定事件,那么0

初三中考重点知识归纳

很多人想知道初三数学的学习上需要掌握哪些重点知识,下面我为大家整理了一些中考必背的数学重点知识,供参考! 中考数学重要知识点归纳 一、基本知识 一、数与代数 A、数与式: 1、有理数 有理数: ①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值: ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。 有理数的运算: 加法: ①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘得0。 ③乘积为1的两个有理数互为倒数。 除法: ①除以一个数等于乘以一个数的倒数。 ②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 初三数学知识点整理 1、 实数的分类 有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,. 无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0). 实数:有理数和无理数统称为实数. 2、无理数 在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类: (1)开方开不尽的数,如等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; (3)有特定结构的数,如0.1010010001...等; (4)某些三角函数,如sin60o等 注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准. 3、非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素") ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。 作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 5、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数. 6、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 (1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞ (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离. (3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,. 注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。 初三数学必背公式大全 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补 15.定理 三角形两边的和大于第三边 16.推论 三角形两边的差小于第三边 17.三角形内角和定理 三角形三个内角的和等于180° 18.推论1 直角三角形的两个锐角互余 19.推论2 三角形的一个外角等于和它不相邻的两个内角的和 20.推论3 三角形的一个外角大于任何一个和它不相邻的内角 21.全等三角形的对应边、对应角相等 22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25.边边边公理(SSS) 有三边对应相等的两个三角形全等 26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27.定理1 在角的平分线上的点到这个角的两边的距离相等 28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29.角的平分线是到角的两边距离相等的所有点的集合 30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33.推论3 等边三角形的各角都相等,并且每一个角都等于60° 34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35.推论1 三个角都相等的三角形是等边三角形 36.推论 2 有一个角等于60°的等腰三角形是等边三角形 37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38.直角三角形斜边上的中线等于斜边上的一半 39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42.定理1 关于某条直线对称的两个图形是全等形 43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48.定理 四边形的内角和等于360° 49.四边形的外角和等于360° 50.多边形内角和定理 n边形的内角的和等于(n-2)×180°

关于九年级数学课件(数学九年级上册内容)的问题分享到这里就结束啦,希望可以解决您的问题哈!