对数课件,对数的概念PPT课件,老铁们想知道有关这个问题的分析和解答吗,相信你通过以下的文章内容就会有更深入的了解,那么接下来就跟着我们的小编一起看看吧。

对数是高等数学中的一个重要概念,它在各个领域中都有着广泛的应用。为了更好地向学生介绍对数的概念,教师用“对数课件,对数的概念PPT课件”来进行讲解。

对数课件,对数的概念PPT课件

在这个课件中,首先对对数的定义进行了详细解释。对数是指数运算的逆运算,即如果a的b次方等于c,那么我们可以说b是以a为底c的对数。这样的定义帮助学生更好地理解对数的本质。

课件讲解了对数的性质。对数的性质有很多,其中最重要的是对数的乘法性质和对数的换底公式。通过实例的运算,学生能够更加直观地理解和记忆这些性质。

课件还介绍了对数的应用。对数在科学、工程、经济等领域中都具有广泛的应用,如在声音强度、地震震级、化学物质浓度等方面。通过了解这些实际应用,学生能够更好地理解对数的重要性和实用性。

课件中还包括了一些习题和讲解答案,供学生进行练习和自我检测。这些习题涵盖了对数的基本运算、性质运用等方面,能够帮助学生巩固所学的知识。

“对数课件,对数的概念PPT课件”是一份很好的教学材料。它通过简洁明了的语言、直观的示意图和丰富的实例,帮助学生更好地理解对数的概念和性质,并应用到实际问题中。作为一名学生,我非常感谢老师提供这样一份优秀的教学资源,它使我能够更好地掌握对数的知识,提升我的数学水平。

对数课件,对数的概念PPT课件

几何画板在演示函数时,可以将代数与几何一起结合起来,图形结合让学生理解得更透彻。以对数函数为例,它的底数发生变化时,函数图象是不一样的。下面就来介绍几何画板对数函数底数变化的演示过程。几何画板演示对数函数底数的变化课件样图:几何画板对数底数

几何画板演示《对数函数底数的变化》课件示例

在这个课件中,点击“01”时,图象从y轴负无穷到正无穷,函数值随x的增大而增大,单调递增,点击“a=1”时,函数图象是一个恒点(1,0),即图中的A点。当点击“图像的变化”这个按钮时,坐标系中的图象会连续变化形成一系列的轨迹,而这些变化都是底数a的变化,而从这些图象中也可以看出底数a的变化对函数图象的影响是很大的。同时也可以看到不管怎么变,函数图象都会过恒点A(1,0)这个点,即不管底数a为多少,函数图象都会这个点。从这个课件中可以很清楚地看到底数a的变化对函数图象的影响,这也让学生看到在计算对数的相关问题时,一定要考虑到底数a的取值范围。a>0与0点击下面的“下载模板”就可以将这个课件下载下来进行演示。几何画板对数函数底数的变化演示,可以让学生对图象进行对比,这样对对数的理解会有更清晰的认识。几何画板函数图象的演示可以让教师节约很多时间,从而提高课堂效率

对数课件PPT

正数与负数这节课是有理数这一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾前两个学段学过的数,然后通过引言中温度、净胜球数、加工允许误差的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.接下来是我为大家整理的 七年级数学 《正数和负数》教案设计 范文 ,希望大家喜欢! 七年级数学《正数和负数》教案设计范文一 1.1正数和负数 教学设计(一) 一、教学目标 (一)知识与技能: 1.会判断一个数是正数还是负数 2.能用正、负数表示生活中具有相反意义的量 (二)过程与 方法 : 经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性 (三)情感态度价值观: 感知到数学知识来源于生活并为生活服务。 二、学法引导 1. 教学方法 :采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。 2.学生学法:研究实际问题→认识负数→负数在实际中的应用。 三、重点、难点、疑点及解决办法 1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。 2.难点:负数的引入。 3.疑点:负数概念的建立。 四、课时安排 2课时 五、教具学具准备 投影仪(电脑)、自制活动胶片、中国地图。 六、教学设计思路 教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。 七、教学步骤 (一)创设情境,复习导入 师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全? 学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数…… 师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。 【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。 提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢? 学生活动:学生们思考,头脑中产生疑问。 【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。 (二)探索新知,讲授新课 师:为了研究这个问题,我们看两个实例 (出示投影1)用复合胶片翻四次 在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃) 学生活动:看图回答10℃,5℃,零下5℃,零下10℃。 [板书] 10 5 -5 -10 师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能 说说 8848米,-155米各表示什么吗? (出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形)。 学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米。 【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位。 教师针对学生回答的情况给与指正。 师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、 ℃记作+5、+10、+1.6、 ,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数。 师随着叙述给出板书 [板书] 正数:大于0的数 负数:正数前面加“-”号(小于0的数) 0:既不是正数也不是负数。 【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的。 (三)尝试反馈,巩固练习 1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数? 2.出示1(投影显示) 例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“ -11,4.8,+7.3,0,-2.7, , , ,-8.12, 3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。 正数集合 负数集合 4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。 (2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平 面相 比怎样? 学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答。 【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础。 师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗? 学生活动:分组讨论,互相补充,两个学生回答。 教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习。 七年级数学《正数和负数》教案设计范文二 1.1 正数和负数 教学目标 1.了解正数和负数的产生过程以及数学与实际生活的联系; 2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点) 3.理解数0表示的量的意义; 4.能用正数、负数表示生活中具有相反意义的量.(难点) 教学过程 一、情境导入 今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便. 这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗? 二、合作探究 探究点一:正、负数的认识 【类型一】 区分正数和负数 例1 下列各数哪些是正数?哪些是负数? -1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,正数是______________;负数是______________. 解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数. 解:在-1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,负数有:-1,-3.14,-1.732,- eq f(2,7) ,正数有:2.5,+ eq f(4,3) ,120,0既不是正数也不是负数.故答案为:2.5,+ eq f(4,3) ,120;-1,-3.14,-1.732,- eq f(2,7) . 方法 总结 :对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数. 【类型二】 对数“0”的理解 例2 下列对“0”的说法正确的个数是(  ) ①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数. A.3 B.4 C.5 D.0 解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A. 方法“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等. 探究点二:具有相反意义的量 【类型一】 会用正、负数表示具有相反意义的量 七年级数学《正数和负数》教案设计范文三 1.1 正数和负数 内容简介 1.《正数和负数》是人教版义务 教育 教科书七年级数学第一章第一节. 2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用. 学情分析 1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础. 2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性. 教学目标 1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要. 2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量. 3.理解数“0”表示的量的意义. 4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法. 5.通过本节课的学习,培养观察、想象、归纳与概括的能力. 6.通过正负数的学习,渗透对立、统一的辩证思想. 教学重点 1.知道什么是正数和负数. 2.理解数“0”表示的量的意义. 教学难点 理解负数、数“0”表示的量的意义. 教学策略 1.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”. 2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入. 3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力. 教学资源 1.教具:电脑、PPT课件(或相应图片)、投影仪. 2.学具:地图册等. 3.多媒体教室. 教学时数 2课时. 第1课时 教学内容 1.1 正数和负数. 教学目标 1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念. 2.能区分两种相反意义的量,会用符号表示正数和负数. 3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣. 教学重点 两种相反意义的量. 教学难点 正确区分两种相反意义的量. 教学过程 一、设置情境 引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考. 师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下 自我介绍 ,我的名字是_ X,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%…… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数. 二、分析问题 探究新知 问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 建议教师以本章引言中的实例加以说明. 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题. 明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数 3,1.8%,3.5 等,还要用到数-3,-2.7%,-4.5,-1.2等,它们的实际意义分别是:零下3摄氏度,减少2.7%,支出4.5元,亏空1.2元. 我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-4.5,-1.2这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号. 强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量. 三、举一反三 思维拓展 经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明. 四、实例演练 深化认识 教科书第3页例题. 例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值. 七年级数学《正数和负数》教案设计范文相关 文章 : 1. 初一上册数学《正数和负数》教案优秀范文五篇 2. 人教版六年级下册《负数》教案范文5篇 3. 初中七年级上册数学《整式》教案优质范文五篇 4. 七年级上册数学《有理数的加减》教案范文五篇 5. 七年级数学学习视频:正数和负数 6. 七年级下册语文《老王》教案设计范文3篇 7. 初一数学正数和负数教学视频 8. 新人教版七年级数学下册教案全册 9. 初一数学教程视频:正数和负数 10. 七年级下册《叶圣陶先生二三事》教案设计范文3篇

指数对数课件

高一数学《指数函数》课件篇一 教学目标 1.使学生掌握指数函数的概念,图象和性质. (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域. (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质. (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如 的图象. 2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法. 3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题. 教学建议 教材分析 (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究. (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分. (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究. 教法建议 (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 等都不是指数函数. (2)对底数 的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来. 关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象. 高一数学《指数函数》课件篇二 教学目标 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣.高一数学《指数函数》课件篇三 一、教材的地位和作用 本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。本节课的内容十分重要,它对知识起到了承上启下的作用。 《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。 二、教学目标 知识目标:①掌握指数函数的概念; ②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。 能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力; ②体会数形结合思想、分类讨论思想,增强学生识图用图的能力; 情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景; ②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。 三、教学重难点 教学重点:进一步研究指数函数的图象和性质。 指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此它对知识起到了承上启下的作用。 教学难点:弄清楚底数a对函数图像的影响。 对于底数a>1和1>a>0时函数图像的不同特征,学生不容易归纳认识清楚。 突破难点的关键: 通过学生间的讨论、交流及多媒体的动态演示等手段,使学生对所学知识,由具体到抽象,从感性认识上升到理性认识,由此来突破难点。 在教学过程中我选择让学生自己去感受指数函数的生成过程以及从这两个特殊的指数函数入手,先描点画图,作为这一堂课的突破口。 四、学情分析及教学内容分析 1、学生知识储备 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识方面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能方面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。 素质方面:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 2、学生的困难 本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,但学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来有一定难度。 五、教法分析 本节课我采用引导发现式的教学方法。通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。 六、教学过程分析 根据新课标的理念,我把整个的教学过程分为六个阶段, 即:1.情景设置,形成概念2.发现问题,深化概念3.深入探究图像,加深理解性质4.强化训练,落实掌握5.小结归纳6.布置作业 (一)情景设置,形成概念 学情分析:1、学生初中就接触过一次函数、二次函数,在第二章再次学习一次函数、二次函数时,学生有一定的知识储备,但对于指数函数而言,学生是完全陌生的函数,无已有经验的参考,在接受上学生有困难。 2、课本给出了两个引例以及在本章章前语也给了一个例子,分别是细胞分裂、放射性物质省留量及“指数爆炸”,这三个例子比较好但离学生的认知仍存在一定距离,于是我在引课这里翻查了一些参考资料,发现这样一个例子,——折纸问题,这个引例对学生而言①便于动手操作与观察②贴近学生的生活实际。 1、引例1:折纸问题:让学生动手折纸 观察:①对折的次数x与所得的层数y之间的关系,得出结论y=x2 ②对折的次数x与折后面积y之间的关系(记折前纸张面积为1), 得出结论y=(1/2)x 引例2:《庄子。天下篇》中写到:“一尺之棰,日取其半,万世不竭”。请写出取x次后,木棰的剩留量与y与x的函数关系式。 设计意图: (1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①a>1②0 (2)让学生感受我们生活中存在这样的指数函数模型,便于学生接受指数函数的形式。 2、形成概念: 形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈R。 提出问题:为什么要限制a>0且a≠1? 这一点让学生分析,互相补充。 分a﹤0,且a=0,0﹤a﹤1,a=1,a>1五部分讨论。 (二)发现问题、深化概念 问题1:判断下列函数是否为指数函数。 1)y=-3x2)y=31/x3)y=31+x4)y=(-3)x5)y=3-x=(1/3)x 设计意图:1、通过这些函数的判断,进一步深化学生对指数函数概念的理解,指数函数的概念与一次、二次函数的概念一样都是形式定义,也就是说必须在形式上一模一样方行,即在指数函数的表达式中y=ax(a>0且a≠1)。 1)ax的前面系数为1,2)自变量x在指数位置,3)a>0且a≠1 2、问题1中(4)y=(-3)x的判定,引出问题1:即指数函数的概念中为什么要规定a>0且a≠1 1)a0时,ax=0;x≤0时无意义。 3)a=1时,ax=1x=1是常量,没有研究的必要。 设计意图:通过问题1对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时也为后面研究函数的图像和性质埋下伏笔。 落实掌握:1)若函数y=(ax-3a+3)ax是指数函数,求a值。 2)指数函数f(x)=ax(a>0且a≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。——待定系数法求指数函数解析式(只需一个方程)。 (三)深入研究图像,加深理解性质 指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。 第一环节:分三步 (1)让学生作图(2)观察图像,发现指数函数的性质(3)归纳整理 学生课前准备:利用描点法作函数y=2x,y=3x,以及y=(1/2)x、y=(1/3)x的图像。 设计意图:(1)观察总结a>1,0 (2)观察y=2x与y=2-x,y=3x与y=3-x图像关于y轴对称。 (3)在第一象限指数函数的图像满足“底大图高。 (4)经过(0,1)点图像位置变化。 变式:去掉底数换成字母,根据图像比较底数的大小。 方法提炼:①用上面得到的规律; ②作直线x=1与指数函数图像相交的纵坐标,即为底数。 第二环节: 利用多媒体教学手段,通过几何画板演示底数a取不同的值时,让学生观察函数图像的变化特征,归纳y=ax的图像与性质 以y=2x为例,让学生用单调性的定义加以证明; 设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。 (2)学习用做商法比较大小。 4、奇偶性:不具备 5、对称性:y=ax不具备,但底数互为倒数的两个指数函数图像关于y轴对称。从形式上可变为y=ax与y=a-x 两个函数y=f(x),y=f(-x)关于y轴对称。 6、交点:(1)与y轴交于一点(0,1)(2)与x轴无交点(x轴为其渐近线) 7、当x>0时,y>1;当x0且a≠1)在第一象限图像“底大图高”(直线x=1辅助) 难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。 为帮助学生记忆,教师用一句精彩的口诀结束性质的探究: 左右无限上冲天,永与横轴不沾边。 大1增,小1减,图像恒过(0,1)点。 (四)强化训练落实掌握 例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。 例2:比较下列各题中两值的大小 (1)(4/3)-0.23与(4/3)-0.25;(2)(0.8)2.5与(0.8)3。 方法指导:同底指数不同,构造指数函数,利用函数单调性 (3)与;(4)与 方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。 (5)(3/4)2/3与(5/6)2/3;(6)(-2.1)3/7与(-2.2)3/7 方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。 (7)(0.3)-3与(2.3)2/3;(8)1.70.3与0.93.1。 方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)3〔(10/3)2/3或(2.3)3〕(2.3)2/3。 变式:已知下列不等式,比较的大小: (l) (2) (3)(且) (4) 设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。 (五)归纳拓展深化 请学生从知识和方法上谈谈对这一节课的认识与收获。 1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1和1>a>0时函数图像的不同特征和性质是学好本节的关键。 2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。 (六)布置作业,延伸课堂 A类:(巩固型)面向全体同学 1、完成课本P93/习题3-1A B类:(提高型)面向优秀学生 2、完成学案P1/题型1。 教学反思: 指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考: 1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节 (1)由具体的折纸的例子引出指数函数 设计意图:贴近学生的生活实际,便于动手操作与观察。 让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。 (2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。 符合学生由特殊到一般的,由具体到抽象的学习认知规律。 (3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。 通过引入->定义->剖析->辨析->运用,这个由特殊到一般的过程揭示了概念的和外延;而后在教师的点拨下,学生作图->观察->探究->交流->概括->运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。 2、课堂练习前后呼应,各有侧重,通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。 3、教学过程设计为六个环节: 1.情景设置,形成概念->2.发现问题,深化概念->3.深入探究图像,加深理解性质->4.强化训练,落实掌握->5.小结归纳,拓展深化->6.布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。 4、通过学案教学为抓手,让学生先学,老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。 5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提,在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。

对数课件高一

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

对数的概念PPT课件

到苏州网上教师学校下载,官方网站,免费的,且不用注册。

http://www.szjys.net/?F=kjjj.html&Tid=110&Segmentid=104&Sid=10010264&Dhtrid=4对数函数精品市级获奖课件 http://www.szjys.net/index.aspx?F=view.html&Rid=29588

对数函数多媒体习题训练课件 http://www.szjys.net/index.aspx?F=view.html&Rid=29587

江苏高中优质课大赛指数函数课件——汤晓燕http://www.szjys.net/index.aspx?F=view.html&Rid=25526很多阿

关于“对数课件,对数的概念PPT课件”的具体内容,今天就为大家讲解到这里,希望对大家有所帮助。