平方根课件(初中必背平方根),老铁们想知道有关这个问题的分析和解答吗,相信你通过以下的文章内容就会有更深入的了解,那么接下来就跟着我们的小编一起看看吧。

平方根课件(初中必背平方根)

平方根课件(初中必背平方根)

平方根是数学中的一个重要概念,它是指一个数的平方等于它本身的非负数。初中时代,我们学习了一些必背的平方根,它们在数学的各个领域都有着广泛的应用。

我们来认识一下平方根的符号。在数学中,平方根用符号 √ 来表示,后面紧跟着要开根的数,比如 √4 就是表示开4的平方根。在初中阶段,我们需要掌握的是一些简单的平方根,比如 √2 、√3 、√5 等,这些平方根的值是无理数,即无法表示成两个整数的比。

平方根的运算是一个重要的数学技能。当我们计算某个数的平方根时,我们可以用试探法、列代数式来进行计算。试探法是通过尝试不同的数逐渐逼方根的值,直到找到一个合适的近似值。利用列代数式的方法可以将一个数的平方根和其他已知的平方根联系起来,从而进行计算。

平方根还有一些重要的性质。其中一个性质是平方根的值大于0,且开方的数越大,平方根的值也越大。另一个性质是对于两个正实数 a 和 b 来说, √(a × b) 等于 √a 乘以 √b,这被称为乘积的平方根。

平方根在几何学中也有广泛的应用。在求解直角三角形的斜边长度时,我们需要用到勾股定理,其中就包括了平方根的运算。平方根还可以用来计算面积和体积等几何问题。

平方根是初中必背的数学知识之一。学好平方根的概念和运算方法,对我们的数学学习和解决实际问题都有着重要的帮助。希望大家能够认真学习和掌握平方根的知识,将其应用于各个领域,提升自己的数学素养。

平方根课件(初中必背平方根)

平方根的教案篇1 人教版七年级数学下册《10.1平方根》 教学设计 ppt课件 导学案 教案 课题: 10.1 平方根(1) 教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性; 2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根; 3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。 教学难点 根据算术平方根的概念正确求出非负数的算术平方根。 知识重点 算术平方根的概念。 教学过程(师生活动) 设计理念 情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容. 这节课我们先学习有关算术平方根的概念. 请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对 本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知 幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路. 提出问题 感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题: 你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法) 这个问题相当于在等式扩=25中求出正数x的值. 练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题 就是已知正方形的面积求正方形的边长,这与学生以前学过的 已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。 归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数. 一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0. 也就是,在等式 =a (x≥0)中,规定x = . 思考:这里的数a应该是怎样的数呢? 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来. 想一想:下列式子表示什么意思?你能求出它们的值吗? 建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。 算术平方根的概念比较抽象,原因之一是学生对石这个新 的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识. 应用新知 例.(课本第160页的例1)求下列各数的算术平方根: (1)100;(2)1;(3) ;(4)0.0001 建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为 例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果. 探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 方法1:课本中的方法,略; 方法2: 可还有其他方法,鼓励学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究. 教科书在边空提出问题“小正方形的对角线的长是多少”, 这是为在10.3节介绍在数轴上画出表示 的点做准备. 小结与作业 课堂小结 提问:1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。 4、 备选题: (1)判断下列说法是否正确: i. 是25的算术平方根; ii. 一6是 的算术平方根; iii. 0的算术平方根是0; iv. 0.01是0.1的算术平方根; ⑤一个正方形的边长就是这个正方形的面积的算术平方根. (2)下列各式哪些有意义,哪些没有意义? ①- ② ③ ④ (3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。 在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根. 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算 术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题. 通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣 的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练. 通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的`必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备. 平方根的教案篇2 平方根教学设计 一、情景引入(复习引入) 1、求下列和数的算术平方根4、9、100、9/16、0.25 2、如果一个数的平方等于9,这个数是多少? 讨论:这样的数有两个,它们是3和-3.注意中括号的作用. 又如:,则x等于多少呢? 二、探索新知 1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根. 求一个数的平方根的运算,叫做开平方. 例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算. 2、观察:课本p45的图6.1-2. 图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根. 例4求下列各数的平方根。 (1) 100 (2) (3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题: 正数的平方根有什么特点?0的平方根是多少?负数有平方根吗? 一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示. 例5说出下列各式的意义,并求出它们的值。 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。 4、堂上练习:课本p46小练习1、2、3 三、归纳小结(学生归纳,老师点评) 1、什么叫做一个数的平方根? 2、正数、0、负数的平方根有什么规律? 3、怎样求出一个数的平方根?数a的平方怎样表示? 四、布置作业 p47-48习题6、1第3、4题。 五、板书设计: 6.1平方根 1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根. 2、a的平方根记为: 3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 《平方根》同步练习题 1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长. 《6.1平方根》课时练习含答案 1.下面说法正确的是( ) a.4是2的平方根 b.2是4的算术平方根 c.0的算术平方根不存在 d.-1的平方的算术平方根是-1 答案:b 知识点:平方根;算术平方根 解析: 解答:a、4不是2的平方根,故本选项错误; b、2是4的算术平方根,故本选项正确; c、0的算术平方根是0,故本选项错误; d、-1的平方为1,1的算术平方根为1,故本选项错误. 故选b. 分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案. 平方根的教案篇3 一、内容和内容解析 1.内容 无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值. 2.内容解析 无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程. 用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力. 使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成. 基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围. 二、目标和目标解析 1.教学目标 (1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值. (2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 2.目标解析 (1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围. (2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的`结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍. 三、教学问题诊断分析 用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求. 基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义. 四、教学过程设计 1.梳理旧知,引出新课 问题1 (1)什么是算术平方根?怎样表示? (2)负数有算术平方根吗? 师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,它的算术平方根又该怎祥求呢? 设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容. 2.问题探究,学习新知 问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形? 师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法. 追问(1) 拼成的这个面积为2d的大正方形的边长应该是多少呢? 师生活动:学生自行解答,教师对解答有困难的学生进行指导. 追问(2) 小正方形的对角线的长是多少呢? 师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d. 设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备. 问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?” 师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程. 追问(1) 那么是1点几呢?你能不能得到的更精确的范围? 师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较. 追问(2) 许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少? 设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法. 3.用计算器,求算术根 例1 用计算器求下列各式的值: (1); (2)(精确到0.001) 师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2). 设计意图:使学生会使用计算器求算术平方根. 练习 教科书第44页练习1. 师生活动:学生独立完成后交流. 设计意图:巩固计算器求算术平方根. 4.综合应用,巩固所学 现在我们来解决本章引言中的问题. 问题4 (1)你会表示出, 吗? (2)用计算器求, .(用科学记数法把结果写成的形式,其中保留小数点后一位) 师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出, . 设计意图:让学生体会计算器在解决实际问题中的应用. 问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中. … 师生共同回顾本节课所学内容,并请学生回答以下问题: (1)利用夹逼法来求算术平方根的近似值的依据是什么? (2)利用计算器可以求出任意正数的算术平方根或近似值吗? (3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢? (4)怎样的数是无限不循环小数? 设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯. 6.布置作业: 教科书习题6.1第6、9、10题. 五、目标检测设计 1.求的整数部分. ?设计意图】主要考查学生的估算能力. 2.比较下列各组数的大小. (1)与;(2)与12;(3)与. ?设计意图】主要考查学生的估算和比较大小的能力. 3.若,,那么_______;_______. ?设计意图】主要考查学生对算术平方根概念以及有关规律的理解. 4.国际比赛的足球场的长在100到110之间, 宽在64到75之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560, 问:这个足球场能用作国际比赛吗? ?设计意图】主要考查学生运用算术平方根解决实际问题的能力. 平方根的教案篇4 问: 1.625的平方根是多少?这两个平方根的和是多少? 2.-7和7是哪个数的平方根? 3.正数m的平方根怎样表示? 4.下列各数的平方根各是什么? 答: 1.625的平方根是25和-25,这两个平方根的和是0. 2.-7和7是49的平方根. (2)0的平方根是0. (5)因为-16<0,所以-16没有平方根. (6)因为(-4)3=-64<0,所以(-4)3没有平方根. 问:已知正方形的面积等于a,那么它的一条边长等于多少? 用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负 (1)被开方数a表示非负数,即a≥0; 号,如a≥0数a的正的平方根. 例1 求下列各数的算术平方根: 问:怎样求各数的算术平方根? 答:可以通过平方运算求一个正数的算术平方根. 解 (1)因为102=100,所以100的算术平方根是10,即 (4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即 问:一个正数a的平方根与这个正数的算术平方根之间有什么关系? 指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的它的算术平方根的相反数. 例2求下列各数的平方根及算术平方根: (2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即 0.0081的算术平方根则是 问:说明下列各式所表示的意义是什么?分别求出它们的值. 1.下列各式中哪些有意义?哪些无意义? 2.判断下列各题正确与错误,并将错误改正. 3.求下列各数的平方根及算术平方根: 4.求下列各式的值: 答案:1(3)无意义,其他各题均有意义. 2.(1)正确;(2),(3),(4)错误. (6)正确. (7)正确. 3.(1)±100,100; (2)±2.7,2.7; 平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系. 1.平方根和算术平方根的区别. (1)定义不同.如果x2=a,那么x叫做a的平方根. 一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根. 如果x2=a,并且x≥0,那么x叫做a的算术平方根. 一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数. (3)平方根等于本身的数是0,算术平方根等于本身的数是0或1. 2.平方根和算术平方根的联系. (1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个. (2)存在条件相同.非负数才有平方根和算术平方根. (3)零的平方根和零的算术平方根都是零. 1.求下列各式的值: 2.求下列各数的平方根及算术平方根: 答案: (4)±70,70; (5)±10-2,10-2. 平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点: 1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示 2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中. 在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法. 平方根的教案篇5 教学目标 知识技能 1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示 2.会用计算器求算术平方根 3.了解无限不循环小数的特点 数学思考 1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维 2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想 解决问题 1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维 2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果 情感态度 1.通过学习算术平方根,认识数学与人类生活的密切联系 2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情 教学重点、难点 重点:算术平方根的概念,感受无理数 难点:探究的大小的过程 教学过程与流程设计 活动1创设情景,引入算术平方根 20xx年10月16日,我国进行首次载人航天飞行取得圆满成功。中华民族探索太空的千年梦想实现了。宇宙在脱离地球轨道进入正常运行轨道的速度要满足一个条件,即介于第一宇宙速度与第二宇宙速度之间,第一宇宙速度和第二宇宙速度分别满足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒): 小欧同学准备参加学校举行的美术作品比赛。他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,请你帮他计算一下这块正方形画布的边长应取多少? 小欧还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来: 面积191636 边长1346 上面的问题,实际上是已知一个正数的平方,求这个正数的问题 一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。 规定:0的算术平方根是0。 活动2通过一些简单例题,进一步了解算术平方根 1、你能求出下列各数的算术平方根吗? 2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。 3、16的算术平方根等于________ 4、的值等于_________ 5、的算术平方根等于_________ 活动3动动脑,动动手,探究的大小 你能用两个面积为单位1的小正方形拼成一个大正方形吗? 回答下列问题 (1)你所得的新正方形的面积是多少? (2)新正方形的边长是多少? 讨论: 你知道有多大吗? 的估算: 如此进行下去,可以得到的近似值,还可以发现是一个无限不循环小数。 活动4财富大统计 1、你认为小欧要解决他参加美术作品比赛中遇到的问题 。

算术平方根格式

如下:

算术平方根的定义:若一个正数x的平方等于a,即x^2=a,则这个正数x为a的算术平方根。

例如:求25的算术平方根格式:

25的算术平方根是√25,√25=5,所以25的算术平方根是5。算术平方根产生:

根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个 “根号二”的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),万物皆数(也就是说世界上所有的事物都可以用有理数来表示)。

对于这个无理数“根号二”,最终人们选取了用根号来表示。

初中必背平方根

初中必背平方根是如下:

一、1=1

二、2=4

三、3=9

四、4=16

五、5=25

六、6=36

七、7=49八、8=64

九、9=81

十、10=100

十一、11=121

十二、12=144

十三、13=169

十四、14=196

十五、15=225

十六、16=256

十七、17=289

十八、18=324

十九、19=361

平方根混合运算100题计算题

二次根式的混合运算法则是两个因式的算术平方根的积,等于这两个因式积的算术平方根。

一般地,形如√a的代数式叫做二次根式,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。

判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根。有理化因式

两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

注意:

①他们必须是成对出现的两个代数式。

②这两个代数式都含有二次根式。

③这两个代数式的积化简后不再含有二次根式。

④一个二次根式可以与几个二次根式互为有理化因式。

初二必背平方根公式

1、1-50平方根表平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。

2、1-50立方根表如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。也就是说,如果x=a,那么x叫做a的立方根。注意:在平方根中的根指数2可省略不写,但立方根中的根指数3不能省略不写。扩展资料平方根教学重点与难点分析

1、重点是平方根和算术平方根的概念。平方根是开方运算的基础,是引入无理数的准备知识。平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习。算术根的教学不但是本章教学的重点,也是今后数学学习的重点。在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。

2、难点是平方根与算术平方根的区别与联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。

3、主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念。另外在文字叙述时注意语言的严谨规范。

关于本次平方根课件(初中必背平方根)的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。