方程课件,二元一次方程,老铁们想知道有关这个问题的分析和解答吗,相信你通过以下的文章内容就会有更深入的了解,那么接下来就跟着我们的小编一起看看吧。

方程课件,二元一次方程

方程课件,二元一次方程

在数学学科中,二元一次方程是一个非常重要的概念和工具。它可以用来描述两个未知数之间的关系,并且可以通过解方程来求解这些未知数的值。在课堂上,老师通常会使用方程课件来讲解和演示二元一次方程的求解过程,以帮助学生更好地理解和掌握这一知识点。

方程课件会引入二元一次方程的概念和定义。二元一次方程是指形如ax+by=c的方程,其中a、b和c为已知常数,而x和y则是未知数。这种方程可以用来表示二维平面上的一条直线,其中x和y分别表示坐标轴上的横纵坐标。

方程课件会介绍二元一次方程的求解方法。通常,我们可以使用代入法或消元法来解二元一次方程。代入法就是将一个方程中的一个未知数用另一个方程中的表达式表示,然后代入到另一个方程中,从而得到一个只包含一个未知数的一元一次方程。而消元法则是通过消除一个未知数,将二元一次方程转化为一元一次方程进行求解。

方程课件还会通过实例演示二元一次方程的求解过程。通过将具体的数值代入到方程中,学生可以跟随课件一步一步地求解方程,理解解方程的思路和方法。方程课件还会提供一些练习题目,帮助学生巩固和加深对二元一次方程的理解和运用能力。

通过方程课件的学习,学生可以更加直观地理解和掌握二元一次方程的概念、求解方法和应用技巧。这种课件的使用不仅可以提高课堂教学的效果,还可以培养学生的数学思维和解决问题的能力。在数学教学中,方程课件是一种非常有价值的教学工具。

方程课件,二元一次方程

【 #课件# 导语】课件制作本身就是作者综合素养的一种体现,它显现出制作者对教育、教学、教材改革方向的把握,对课堂教学的理解,对现代教育技术的领悟。因此教师在设计课件时一定要吃透教学内容,设计出符合教学的方案用于课件。下面是 整理分享的初中数学课件:《一元二次方程》,欢迎阅读与借鉴,希望对你们有帮助!初中数学课件篇一:《一元二次方程》 一、教材分析 1、教材的地位和作用 一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,学习一元二次方程对其他学科也有重要的意义。 2、教学目标及确立目标的依据 九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。 知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。 能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。 德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。 3、重点,难点及确定重难点的依据 “一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。 二、教材处理 在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。 三、教学方法和学法 教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。 四、教学手段 采用投影仪 五、教学程序 1、新课导入: (1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫) (2)列方程解应用题的方法,步骤?(并引例打基础) 课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的) 设出求知数,列出代数式,并根据等量关系列出方程 初中数学课件篇二:《一元二次方程》 一、教学目标 1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。 2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。 3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。 二、教学重难点 重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。 难点:找对题目中的数量关系从而列出一元二次方程。 三、教学过程 (一)导入新课 师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗? 生:老师,这是雷锋叔叔。 师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊? 生:是的老师。 师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢? 生:想。 师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习--一元二次方程。 (二)新课教学 师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。 (下去巡视) (三)小结作业 师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。 四、板书设计 五、教学反思

整式方程

①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数)   ②去括号(把括号去掉 切记看符号)   ③移项(把方程两边都加上或减少同一个数或同一个整式)   ④合并同类项   ⑤系数化为一  例题:   x/2-5=2(X-4)   去分母 x-10=4(x-4)   去括号 x-10=4x-16  移项 x-4x=-16+10   合并同类项 -3x=-6   系数化为一 x=2

常见的6种类型方程

一元二次方程只有五种解法,没有六种,如下:

1、直接开平方法

对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。

2、配方法

在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。3、公式法

公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。用公式法的注意事项只有一个就是判断“▲”的取值范围,只有当△≥0时,一元二次方程才有实数解。

4、因式分解法

因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节,所以也是考试出题老师非常喜欢的一类题型。

5、图像解法

一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。

当△>0时,则该函数与x轴相交(有两个交点)。

当△=0时,则该函数与x轴相切(有且仅有一个交点)。

当△≤0时,则该函数与轴x相离(没有交点)。

方程的意义PPT

《方程的意义》教案(一) 教学目标 知识与技能: (1)初步理解方程的意义,会判断一个式子是否是方程 (2)会按要求用方程表示出数量关系 过程与方法: 经历方程的认识过程,体验观察、比较的学习方法。 情感态度与价值观: 在学习活动中,激发学生的学习兴趣,培养学生动手动脑的能力,养成仔细认真的良好学习习惯。 教学重难点 教学重点: 理解方程的含义,会用方程表示简单的情境中的等量关系。 教学难点: 正确分析题目中的数量关系 教学工具 多媒体设备 教学过程 教学过程设计 1 创设情景,揭示课题。 (一)出示实物天平。 师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡) (二)演示:出示三个质量分别20克、30克、50克砝码,(将未标有重量的一边朝向学生) 师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?(演示) 学生观察后发现天平平衡(将砝码标有重量的一边朝向学生) 提出要求:你能用等式表示天平两边物体的质量关系吗?(学生在本子上写,指名回答。) 板书:方程的意义 2 新知探究 (一)出示课本例题(见PPT课件) 说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。 (板书:含有等号的式子叫等式) [设计意图] :让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。 (二)引导分类,概括方程概念。 1、学生自学(见PPT课件) 要求: (1)学生在书上独立填写,用式子表示天平两边的质量关系。 (2)小组同学交流八道算式,最后达成统一认识: 20+30=50 20+X=100 50+X=100 50+2X>100 80100+50 100+2X>50×3 ( 根据学生的回答,教师板书这8道算式。) (3)把这8道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。 A、想一想你分类的标准是什么? B、把自己分类的情况,写在纸上? 学生可能会这样分: 第一种: 相等的分一类,不相等的分一类 ( 20+30=50 20+X=100 50+X=100 3X=150) (50+2X>100 80100+50 100+2X>50×3) 第二种:含有未知数的,不含未知数的 (20+X=100 50+X=100 50+2X>100 8050×3) ( 20+30=50 100+20>100+50) 2、比较辨析,概括概念 过渡:看来同学们都能按自己的标准对式子进行分类。 引导学生理解第一种分法: 你为什么这样分,说说你的想法。 A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+100=250、这样_____________的等式方程) B、你能说说什么叫方程吗? C、学生发言,概括出:“像20+x=100, 3×=180……含有未知数的等式叫做方程” 师(板书) 师提问:你觉得这句话里哪两个词比较重要? 生:“含有未知数”“等式” 师:那X+100>100、X+5010 2y÷5=10 n-5m = 15 17-8 = 9 1010 17-8 = 9 10 180 ⑧100+2χ=3×50 思考:你能给这些式子分类吗?并说说是按照什么标准分类的。同桌合作交流汇报 等式 不等式 ①20+30=50 ④50+2χ> 180 ②20+χ=100 ⑤ 80 180 ③50×2=100 ⑤ 80 72 ( ) ⑨ 9b-3=60 ( ) ⑩ χ+y=60 ( ) 你会自己写出一些方程吗?(请同学板演,其他同学在练习本上写) 师:通过这一节课的学习,你对方程还有进一步的理解吗? ,,,, 聪聪也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程? (1) 6χ+( ) =78 (2) 36+( ) =42 学生反馈 课件出示:“方程一定是等式,等式也一定是方程”这句话对吗? 小组内相互讨论得出结论 汇报老师 全班集体订正。 你能用自己的方式表示方程和等式之间的关系吗? 引导概括得出:方程一定是等式;但等式不一定是方程。 三、全课总结 通过这一节课的学习,你有哪些收获? 四、布置作业 完成第63页 “做一做”1、2题。

二元一次方程

二元一次方程求解公式如下:

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a

韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。

一元二次方程的根的判别式为(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

参考资料来源:百度百科-韦达定理

关于本次方程课件,二元一次方程的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。