各位老铁们,大家好,今天小编来为大家分享平方根课件 平方根课件PPT免费相关知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

免费获取平方根课件PPT,轻松掌握平方根知识

平方根课件 平方根课件PPT免费

导语:平方根是数学中常见的概念之一,掌握平方根的计算方法对学生来说非常重要。为了帮助学生更好地理解和应用平方根知识,我们特别制作了一份免费的平方根课件PPT,帮助学生轻松掌握平方根知识,提高数学能力。

一、什么是平方根?

平方根是一个数学术语,即一个数的平方根是使得它的平方等于被开方数的数。数学中,√9=3,因为3的平方等于9。平方根广泛应用于几何、物理、工程等领域。

二、为什么要掌握平方根知识?

掌握平方根知识对学生来说非常重要,因为它与许多数学概念和计算方法有着密切的关系。掌握平方根计算方法可以帮助学生解决各种数学问题,例如求解二次方程的根、计算三角函数值等。平方根知识还能帮助学生更好地理解数学中的平方、立方等概念。

三、免费获取平方根课件PPT的好处

1. 完整而系统的知识讲解:平方根课件PPT从浅到深地讲解了平方根的概念、性质、计算方法等内容,帮助学生逐步理解和掌握平方根知识。

2. 生动形象的图表和示例:平方根课件PPT通过生动的图表和实例,直观地展示了平方根的计算过程和应用场景,让学生更好地理解和记忆。

3. 丰富的练习题和解析:平方根课件PPT提供了丰富的练习题,供学生巩固知识点和提高解题能力。每道题目都有详细的解析,帮助学生发现自己的错误并改正。

四、如何获取免费平方根课件PPT?

只需在搜索引擎中输入“平方根课件PPT免费下载”,即可轻松找到并下载这份免费的平方根课件PPT。它可以帮助学生自主学习或作为教师授课的辅助工具。

平方根课件PPT是学习和掌握平方根知识的重要工具,通过免费获取这份课件PPT,学生可以轻松地掌握平方根知识,提高数学能力。希望学生们能够利用这个资源,充分发挥自己的潜力,取得更好的学业成绩。

平方根课件 平方根课件PPT免费

平方根的教案篇1 人教版七年级数学下册《10.1平方根》 教学设计 ppt课件 导学案 教案 课题: 10.1 平方根(1) 教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性; 2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根; 3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。 教学难点 根据算术平方根的概念正确求出非负数的算术平方根。 知识重点 算术平方根的概念。 教学过程(师生活动) 设计理念 情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容. 这节课我们先学习有关算术平方根的概念. 请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对 本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知 幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路. 提出问题 感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题: 你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法) 这个问题相当于在等式扩=25中求出正数x的值. 练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题 就是已知正方形的面积求正方形的边长,这与学生以前学过的 已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。 归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数. 一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0. 也就是,在等式 =a (x≥0)中,规定x = . 思考:这里的数a应该是怎样的数呢? 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来. 想一想:下列式子表示什么意思?你能求出它们的值吗? 建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。 算术平方根的概念比较抽象,原因之一是学生对石这个新 的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识. 应用新知 例.(课本第160页的例1)求下列各数的算术平方根: (1)100;(2)1;(3) ;(4)0.0001 建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为 例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果. 探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 方法1:课本中的方法,略; 方法2: 可还有其他方法,鼓励学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究. 教科书在边空提出问题“小正方形的对角线的长是多少”, 这是为在10.3节介绍在数轴上画出表示 的点做准备. 小结与作业 课堂小结 提问:1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。 4、 备选题: (1)判断下列说法是否正确: i. 是25的算术平方根; ii. 一6是 的算术平方根; iii. 0的算术平方根是0; iv. 0.01是0.1的算术平方根; ⑤一个正方形的边长就是这个正方形的面积的算术平方根. (2)下列各式哪些有意义,哪些没有意义? ①- ② ③ ④ (3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。 在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根. 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算 术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题. 通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣 的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练. 通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的`必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备. 平方根的教案篇2 平方根教学设计 一、情景引入(复习引入) 1、求下列和数的算术平方根4、9、100、9/16、0.25 2、如果一个数的平方等于9,这个数是多少? 讨论:这样的数有两个,它们是3和-3.注意中括号的作用. 又如:,则x等于多少呢? 二、探索新知 1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根. 求一个数的平方根的运算,叫做开平方. 例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算. 2、观察:课本p45的图6.1-2. 图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根. 例4求下列各数的平方根。 (1) 100 (2) (3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题: 正数的平方根有什么特点?0的平方根是多少?负数有平方根吗? 一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示. 例5说出下列各式的意义,并求出它们的值。 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。 4、堂上练习:课本p46小练习1、2、3 三、归纳小结(学生归纳,老师点评) 1、什么叫做一个数的平方根? 2、正数、0、负数的平方根有什么规律? 3、怎样求出一个数的平方根?数a的平方怎样表示? 四、布置作业 p47-48习题6、1第3、4题。 五、板书设计: 6.1平方根 1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根. 2、a的平方根记为: 3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 《平方根》同步练习题 1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长. 《6.1平方根》课时练习含答案 1.下面说法正确的是( ) a.4是2的平方根 b.2是4的算术平方根 c.0的算术平方根不存在 d.-1的平方的算术平方根是-1 答案:b 知识点:平方根;算术平方根 解析: 解答:a、4不是2的平方根,故本选项错误; b、2是4的算术平方根,故本选项正确; c、0的算术平方根是0,故本选项错误; d、-1的平方为1,1的算术平方根为1,故本选项错误. 故选b. 分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案. 平方根的教案篇3 一、内容和内容解析 1.内容 无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值. 2.内容解析 无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程. 用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力. 使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成. 基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围. 二、目标和目标解析 1.教学目标 (1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值. (2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 2.目标解析 (1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围. (2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的`结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍. 三、教学问题诊断分析 用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求. 基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义. 四、教学过程设计 1.梳理旧知,引出新课 问题1 (1)什么是算术平方根?怎样表示? (2)负数有算术平方根吗? 师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,它的算术平方根又该怎祥求呢? 设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容. 2.问题探究,学习新知 问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形? 师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法. 追问(1) 拼成的这个面积为2d的大正方形的边长应该是多少呢? 师生活动:学生自行解答,教师对解答有困难的学生进行指导. 追问(2) 小正方形的对角线的长是多少呢? 师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d. 设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备. 问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?” 师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程. 追问(1) 那么是1点几呢?你能不能得到的更精确的范围? 师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较. 追问(2) 许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少? 设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法. 3.用计算器,求算术根 例1 用计算器求下列各式的值: (1); (2)(精确到0.001) 师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2). 设计意图:使学生会使用计算器求算术平方根. 练习 教科书第44页练习1. 师生活动:学生独立完成后交流. 设计意图:巩固计算器求算术平方根. 4.综合应用,巩固所学 现在我们来解决本章引言中的问题. 问题4 (1)你会表示出, 吗? (2)用计算器求, .(用科学记数法把结果写成的形式,其中保留小数点后一位) 师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出, . 设计意图:让学生体会计算器在解决实际问题中的应用. 问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中. … 师生共同回顾本节课所学内容,并请学生回答以下问题: (1)利用夹逼法来求算术平方根的近似值的依据是什么? (2)利用计算器可以求出任意正数的算术平方根或近似值吗? (3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢? (4)怎样的数是无限不循环小数? 设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯. 6.布置作业: 教科书习题6.1第6、9、10题. 五、目标检测设计 1.求的整数部分. ?设计意图】主要考查学生的估算能力. 2.比较下列各组数的大小. (1)与;(2)与12;(3)与. ?设计意图】主要考查学生的估算和比较大小的能力. 3.若,,那么_______;_______. ?设计意图】主要考查学生对算术平方根概念以及有关规律的理解. 4.国际比赛的足球场的长在100到110之间, 宽在64到75之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560, 问:这个足球场能用作国际比赛吗? ?设计意图】主要考查学生运用算术平方根解决实际问题的能力. 平方根的教案篇4 问: 1.625的平方根是多少?这两个平方根的和是多少? 2.-7和7是哪个数的平方根? 3.正数m的平方根怎样表示? 4.下列各数的平方根各是什么? 答: 1.625的平方根是25和-25,这两个平方根的和是0. 2.-7和7是49的平方根. (2)0的平方根是0. (5)因为-16<0,所以-16没有平方根. (6)因为(-4)3=-64<0,所以(-4)3没有平方根. 问:已知正方形的面积等于a,那么它的一条边长等于多少? 用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负 (1)被开方数a表示非负数,即a≥0; 号,如a≥0数a的正的平方根. 例1 求下列各数的算术平方根: 问:怎样求各数的算术平方根? 答:可以通过平方运算求一个正数的算术平方根. 解 (1)因为102=100,所以100的算术平方根是10,即 (4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即 问:一个正数a的平方根与这个正数的算术平方根之间有什么关系? 指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的它的算术平方根的相反数. 例2求下列各数的平方根及算术平方根: (2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即 0.0081的算术平方根则是 问:说明下列各式所表示的意义是什么?分别求出它们的值. 1.下列各式中哪些有意义?哪些无意义? 2.判断下列各题正确与错误,并将错误改正. 3.求下列各数的平方根及算术平方根: 4.求下列各式的值: 答案:1(3)无意义,其他各题均有意义. 2.(1)正确;(2),(3),(4)错误. (6)正确. (7)正确. 3.(1)±100,100; (2)±2.7,2.7; 平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系. 1.平方根和算术平方根的区别. (1)定义不同.如果x2=a,那么x叫做a的平方根. 一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根. 如果x2=a,并且x≥0,那么x叫做a的算术平方根. 一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数. (3)平方根等于本身的数是0,算术平方根等于本身的数是0或1. 2.平方根和算术平方根的联系. (1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个. (2)存在条件相同.非负数才有平方根和算术平方根. (3)零的平方根和零的算术平方根都是零. 1.求下列各式的值: 2.求下列各数的平方根及算术平方根: 答案: (4)±70,70; (5)±10-2,10-2. 平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点: 1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示 2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中. 在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法. 平方根的教案篇5 教学目标 知识技能 1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示 2.会用计算器求算术平方根 3.了解无限不循环小数的特点 数学思考 1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维 2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想 解决问题 1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维 2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果 情感态度 1.通过学习算术平方根,认识数学与人类生活的密切联系 2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情 教学重点、难点 重点:算术平方根的概念,感受无理数 难点:探究的大小的过程 教学过程与流程设计 活动1创设情景,引入算术平方根 20xx年10月16日,我国进行首次载人航天飞行取得圆满成功。中华民族探索太空的千年梦想实现了。宇宙在脱离地球轨道进入正常运行轨道的速度要满足一个条件,即介于第一宇宙速度与第二宇宙速度之间,第一宇宙速度和第二宇宙速度分别满足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒): 小欧同学准备参加学校举行的美术作品比赛。他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,请你帮他计算一下这块正方形画布的边长应取多少? 小欧还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来: 面积191636 边长1346 上面的问题,实际上是已知一个正数的平方,求这个正数的问题 一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。 规定:0的算术平方根是0。 活动2通过一些简单例题,进一步了解算术平方根 1、你能求出下列各数的算术平方根吗? 2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。 3、16的算术平方根等于________ 4、的值等于_________ 5、的算术平方根等于_________ 活动3动动脑,动动手,探究的大小 你能用两个面积为单位1的小正方形拼成一个大正方形吗? 回答下列问题 (1)你所得的新正方形的面积是多少? (2)新正方形的边长是多少? 讨论: 你知道有多大吗? 的估算: 如此进行下去,可以得到的近似值,还可以发现是一个无限不循环小数。 活动4财富大统计 1、你认为小欧要解决他参加美术作品比赛中遇到的问题 。

平方根课件PPT

制作PPT是日常工作中必备技能之一,每个培训管理者都清楚,用到PPT的地方数不胜数。PPT中打出根号有两种方法,下面大家跟着我一起来看看吧,希望对大家有所帮助。

工具:

联想拯救者Y700

Windows7

PPT2016方法一:1、首先打开需要编辑的ppt,点击上方“插入”选项。2、然后在该页面中点击“公式”选项。3、之后在该页面中点击“插入新公式”选项。4、然后在该页面中点击“根号”图标选项。5、最后在该页面中即可看到已经打出根号了。方法二:1、点击桌面浮动的语言栏的小键盘。2、点右键,选数学符号。3、点击进去,就能看到根号了。注意事项:其他的许多数学和特殊符号都可以安装这两种方法打出来。

平方根课件湘教版

新沪教版初中数学七上 https://pan.baidu.com/s/15FnRFGS44TU8saGspnlZrQ

?pwd=5sxf 提取码: 5sxf

新沪教版初中数学七上|3初中数学沪教版(五四制)七年级上册试题|3初中数学沪教版(五四制)七年级上册课件|3初中数学沪教版(五四制)七年级上册课本图片|3初中数学沪教版(五四制)七年级上册教案|3初中数学沪教版(五四制)七年级上册导学案|3初中数学沪教版(五四制)七年级上册导学案.rar|3初中数学沪教版(五四制)七年级上册教案.rar|沪教版(五四学制)数学七年级上册电子课本 PDF 版.pdf|3初中数学沪教版(五四制)七年级上册课件|3初中数学沪教版(五四制)七年级上册课件.rar|沪教版数学七上课件9.9 积的乘方.ppt|沪教版数学七上课件9.8 幂的乘方.ppt|沪教版数学七上课件9.7 同底数幂的乘法.ppt|沪教版数学七上课件9.6 整式的加减.ppt

平方根课件PPT免费

老师要以学生为主体,考虑到概念课的特殊性,呈现教师引导、学生表达,教师归纳。下面是我为大家整理的华师大版八年级上册数学课件,希望能够帮助到你们。   华师大版八年级上册数学课件 1。平方根 【教学目标】 知识与技能 了解一个数的平方根、算术平方根及开平方的意义,会用根号表示一个数的平方根、算术平方根。能用计算器求一个数的平方根。 过程与方法 了解开方与乘方是互逆运算,会利用这个互逆运算关系求某些非负数的算术平方根。 情感、态度与价值观 通过学习,体验数学知识来源于实践,是由于生活或生产的需要而产生、发展的。 【重点难点】 重点 平方根、算术平方根的概念。 难点 有关平方根、算术平方根的运算的区别与联系。 【教学过程】 一、创设情景,导入新课 同学们,2013年6月17时38分神十成功发射,其飞行速度大于第一宇宙速度V,而小于第二宇宙速度v2,v1,v2,满足v12=gR,v22=2gR,要求v1与v2就要用列平方根的概念。 多媒体展示教科书导图提出的问题,( )2=25。 二、师生互动,探究新知 1。用平方运算求平方根 【教师活动】 自学课本P2到例1止,什么是平方根?我们是根据什么求25的平方根的? 【学生活动】 小组交流讨论后,代表发言。 【教师活动】 教师板书平方根概念并强调:弄清楚“谁”是“谁”的平方根,且正数有两个平方根,它们互为相反数,负数没有平方根。在此基础上完成例1,并注意学生利用平方运算求一个数平方根时语言的规范性。 2。算术平方根 【教师活动】 正数a的正的平方根叫做a的算术平方根,记作a,正数a的平方根记作±a,0的平方根是0,0的算术平方根是0。 【学生活动】 完成例2。 【教师活动】 教师强调用平方运算求平方根,并用数学符号± 表示平方根,用 表示算术平方根。 3。利用计算器求算术平方根 【学生活动】 用计算器操作。 【教师活动】 教师强调:正确的操作程序与精确度。 三、随堂练习,巩固新知 1。求下列各式的值: (1)1。96;(2)—49;(3)±5116;(4)(—15)2。 【答案】 (1)1。96表示1。96的算术平方根,∵1。42=1。96,∴1。96=1。4。 (2)—49表示49的算术平方根的相反数,∵72=49,∴—49=—7。 (3)±5116表示5116的平方根,∵5116=8116,(±94)2=8116,∴±5116=±8116=±94。 (4)(—15)2表示(—15)2=225的算术平方根,∵152=225,∴(—15)2=15。 2。求下列各数的算术平方根: (1)1144;(2)(—100)2;(3)(±25)2。 【答案】 (1)∵(112)2=1144,∴1144的算术平方根是112,即1144=112。 (2)∵(—100)2=1002,∴(—100)2的算术平方根是100,即(—100)2=100。 (3)∵±25表示25的平方根,(±5)2=25, ∴25的平方根是±5。∴(±25)2=(±5)2=25, ∵52=25,∵(±25)2=(±5)2=25。 ∵52=25,∴(±25)2的算术平方根是5, 即(±25)2=5。 四、典例精析,拓展新知 【例1】 三角形的三边长为a、b、c且a—2+|b—3|=0,c为偶数,求△ABC的周长。 【分析】 a—2表示a—2的算术平方根,故a—2≥0,即a—2≥0,而|b—3|≥0,利用非负数和为0,则分别为0,求出a、b,再由三边关系求解。 【答案】 △ABC的周长为7或9。 a表示a的算术平方根,具有双重非负性,非负数和为0,则各非负数为0。 六、师生互动,课堂小结 这节课你学到了什么?有何收获?有何困惑?并与同伴交流,在学生交流发言的基础上教师归纳总结。 1。平方根、算术平方根的概念、表示方法和读法。 2。(1)正数的平方根有两个,它们互为相反数; (2)0的平方根只有一个,为0; (3)负数没有平方根。 3。0既是0的平方根,也是0的算术平方根。 4。开平方的概念。 【教学反思】 本节课概念较多,从神十飞天入手导入新课,抓住了学生。从正方形的面积为25,求它的边长,进行平方根与算术平方根的教学。整堂课师生互动,以学生为主体,考虑到概念课的特殊性,呈现教师引导、学生表达,教师归纳、学生理解模式。 求平方根时,利用平方运算,并适时进行用± 或 表示平方根或算术平方根。典例精析对a的双重非负性,学困生可能有困难,教师给予适当的关注。

平方根课件FLASH

作为一名教师,最基本的就是要做好教案。如何做一个好的教案,提起学生的兴趣呢。下面是范文栏目的我为大家准备的初中数学教案,欢迎大家阅读和参考。 初中数学教案:七年级数学《代数式》教案 教学目标 1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步; 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。 教学建议 1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。 2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解: (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性. (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式. 等都不是代数式. 3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。 如:说出代数式7(a-3)的意义。 分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。7(a-3)的意义是7与(a-3)的积。 4.书写代数式的注意事项: (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面. 如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数, #FormatImgID_0# .数字与数字相乘一般仍用“×”号. (2)代数式中有除法运算时,一般按照分数的写法来写. (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来. 5.对本节例题的分析: 例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍. 例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已. 6.教法建议 (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。 (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。 (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。 (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。 (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。怎么才能给学生留下好印象呢?你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。 7.教学重点、难点: 重点:用字母表示数的意义 难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。 教学设计示例 课堂教学过程设计 一、从学生原有的认知结构提出问题 1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们? (通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律 a+b=b+a; (2)乘法交换律 a·b=b·a; (3)加法结合律 (a+b)+c=a+(b+c); (4)乘法结合律 (ab)c=a(bc); (5)乘法分配律 a(b+c)=ab+ac 指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”; (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数 2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少? 3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗? 4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少? (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米) 此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容. 三、讲授新课 1代数式 单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义 2举例说明 例1 填空: (1)每包书有12册,n包书有__________册; (2)温度由t℃下降到2℃后是_________℃; (3)棱长是a厘米的正方体的体积是_____立方厘米; (4)产量由m千克增长10%,就达到_______千克 (此例题用投影给出,学生口答完成) 解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m 例2 说出下列代数式的意义: 解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积; (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方 说明:(1)本题应由教师示范来完成; (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等 例3 用代数式表示: (1)m与n的和除以10的商; (2)m与5n的差的平方; (3)x的2倍与y的和; (4)ν的立方与t的3倍的积 分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面 四、课堂练习 1填空:(投影) (1)n箱苹果重p千克,每箱重_____千克; (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米; (3)底为a,高为h的三角形面积是______; (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____ 2说出下列代数式的意义:(投影) 3用代数式表示:(投影) (1)x与y的和; (2)x的平方与y的立方的差; (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和 五、师生共同小结 提出如下问题: 1本节课学习了哪些内容?2用字母表示数的意义是什么? 3什么叫代数式? 教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号 六、作业 1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长 2张强比王华大3岁,当张强a岁时,王华的年龄是多少? 3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,飞机与自行车的速度各是多少? 4a千克大米的售价是6元,1千克大米售多少元? 5圆的半径是R厘米,它的面积是多少? 6用代数式表示: (1)长为a,宽为b米的长方形的周长; (2)宽为b米,长是宽的2倍的长方形的周长; (3)长是a米,宽是长的1/3 的长方形的周长; (4)宽为b米,长比宽多2米的长方形的周长 《代数式》教学设计2 1、教学目标: 1) 知识与技能目标: ① 让学生经历代数式概念的产生过程,了解代数式的概念. ② 使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和 解释简单实际问题中的数量关系. 2) 过程与方法目标: ① 使学生在探索与创造的数学学习活动中,学会与人合作、与人交流. ② 通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变"学会"为"会学". 3) 情感与态度目标: ① 渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感. ② 激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯. ③ 利用实际情境,渗透爱国主义教育和乡土文化教育,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心. 2、教学重、难点: 1) 教学重点:代数式的概念和列代数式. 突出重点措施: (1)通过比较--判别--交流--构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解. (2)通过"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,让学生获得必需的数学经验. 2) 教学难点:用代数式表示实际问题中的数量关系. 突破难点策略: (1)分三步分散难点①引入时设计大量学生身边的实际情景,让学生体会到代数式存在的普遍性.②让学生给自己构造的一些简单代数式赋予实际意义,使学生进一步体会到代数式的模型思想。③通过"开动脑筋齐探索"和"返程路上解疑问"等环节进一步提高学生分析、解决实际问题的能力. (2)通过FLASH演示情景,小组合作交流等形式突破代数式的应用瓶颈. 3、教学流程: 教学 环节 教学过程 师生活动 设计说明 创设情境导入新课 引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学. 沿参观旅程依此遇到下列问题: 1、大家知道鲁迅纪念馆距学校有多远吗?若鲁迅纪念馆距学校s千米,校车的速度为50千米/小时,那么经多少小时后到达博物馆? 2、买门票.鲁迅纪念馆门票价格为:成人每人60元,学生每人40元.如果让你去买门票,你该怎么买?我们有a个老师b个学生,买门票需付多少钱呢? 3、在参观时了解到了纪念馆的一些情况: (1)鲁迅纪念馆共有鲁迅故居、百草园、三味书屋、鲁迅祖居和鲁迅生平事迹陈列厅等4个开放场所,建筑面积分别为a,b,c,d平方米.,你知道平均每个场所有多少平方米吗? (2)鲁迅生平事迹陈列厅呈长方形,东西长m米,宽n米,共展出鲁迅生平展品p件. 那么鲁迅生平事迹陈列厅占地面积为多少平方米呢?平均每平方米展出了多少件展品呢? 让学生根据情景列出算式. 【师】:展示图片,引导学生进入参观的旅程. 【生】:成为参观旅程的主角,依次解决旅程中遇到的实际问题. 【师】:在点出字母表示数后引导学生列算式.并回顾前一节中的书写规定,突出书写的规范性. 由学生熟悉的鲁迅纪念馆引入,进行爱国主义教育和乡土文化教育,体现数学的人文价值,突出数学的教育功能.让学生做导游,体现学生的主体地位.碰到的一些数学问题都是在旅途中出现的,符合学生的认知特点,激发学习的内动力,也使学生意识到代数式的普遍性.1、2两题的设计是为了渗透代数式的普遍意义。 1)类比旧知探新知: 引导学生观察上面所列的算式: 它们与我们以前学过的算式有什么区别?点出课题(板书课题) 概念:像 这样含有字母的数学表达式称为代数式 先判别下列哪些是代数式?再说说你对代数式构成的看法. 【师】:引导学生观察算式,并与以前学过的算式相比较,得出概念. 在学生交流的基础上点明代数式的构成。 让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识,获得对概念的理解,发展数学能力。改变学生的学习方式,变"学会"为"会学"。 师生互动探索新知 动手计算再探新知 欢乐游戏巩固新知 对代数式构成的理解: (1)一个代数式由数、表示数的字母和运算符号组成. 这里的运算指加、减、乘、除、乘方和开方6种运算. (2)为了今后研究和表述方便,规定单独一个数或者字母也称代数式. 2)大家一起来列式: 用代数式表示: (1) x的3倍与3的差; (2) x的 倍与y的一半的和; (3)2a的立方根; (4)a与b的和的平方; (5)a与b的平方的和.; (6)a与b两数的平方和. 巩固练习:用代数式表示: (1) a与b的 的和 ; (2) m与n两数的倒数差; (3) 除 所得的商; (4)x与1的差的平方根. 教师在讲评时突出代数式的书写规范及列代数式的注意点,点明各种运算的意义:"+"--和,"-"--差,"×"--积,"÷"--商. 3)聪明才智共编式 请根据下列数字与字母,添上适当的运算符号,编写出几个你喜欢的代数式,并试着用语言表述所编代数式的意义. 以小组为单位,先互相交流编写的代数式及其意义,然后挑选1-2个简单的代数式,结合生活实际,试着赋予代数式实际意义,并在组内交流. 4)开动脑筋齐探索 各小组选取下列的1个主题作为小组的探索内容,小组成员先自主探索,想想各主题还能引伸出哪些问题,再在组内交流。 主题1:用代数式表示偶数、奇数;(提示:可考虑如何表示三个连续偶数等) 主题2:下图是三国时期的数学家赵爽在《周髀算经》中作的图,它由四个完全一样的直角三角形拼成,史称"弦图",标志着中国古代的数学成就,在北京召开的2002年国际数学家大会(TCM-2002)把它作为会标.请你用代数式表示出大正方形的面积.(提示:想一想有哪几种表示方法) 主题3: 摆火柴梗游戏:如下图,用火柴梗摆出一个三角形至少需3根火柴梗,摆出2个三角形至少需5根火柴梗,摆出3个三角形至少需7根火柴梗......请你以此探索:摆出10个三角形至少需多少火柴梗?摆出n个三角形呢?(提示:如果摆成正方形呢?) 游戏之中验真知 游戏-你选我砸共过关:8个金蛋中任选其中一个金蛋,如果出现金花,大家鼓掌PASS,否则你必须回答其中的问题(你可以自己作答,也可以求助本组同学). (1)列代数式:a与b的差的倒数 (2)说出代数式:(a+b)(a-b)的意义 (3)已知甲数比乙数的2倍少1.若设乙数为x,用关于x的代数式表示甲数.变式:若设甲数为x,用关于x的代数式表示乙数. (4)纪念馆外一五彩花圃的形状如图,则花圃的面积为_______. 【生】:观察,类比,在判别的基础上发表自己对概念的理解,进行交流. 【生】:举手发言,解决问题. 【师】:引导学生注意每题的关键词,指导学生正确书写. 并进行及时评价. 【生】:构造代数式,交流代数式的意义,并用生活经验对所构造代数式进行解释. 【师】:引导学生把意义表达清楚,多作鼓励,进行多元评价. 【生】:自主探索,小组合作,代表发言,辩论交流. 【师】:及时评价。 【生】:选择金蛋号,回答里面的问题,其它同学思考,提供帮助 【师】:代为砸蛋 用代数式表示常用的数量关系是方程、不等式、函数等各种数学知识的基础,是本节课的重点,这里花较多的时间让学生进行训练,关键是让学生学扎实,突出数学课程的基础性和普及性,使人人获得必需的数学。 通过"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,强化了代数式的符号性,让学生获得必需的数学经验.同时,开放性问题的设计也为不同的人在数学上得到不同的发展创造了条件,体现了数学课程的发展性。 让学生结合生活实际,赋予代数式实际意义,使学生进一步意识到代数式的概念是为解决实际问题的需要而产生的. 主题1:突出代数式的普遍意义,渗透集合思想。 主题2:渗透数学人文和爱国情怀,让学生体会到其实数学发现就在我们身边,体验数学探究成功的喜悦。 主题3:突出数学活动的趣味性,使学生意识到玩也可以玩出数学来,渗透数学意识。 小组合作交流,更能发挥学生解决难题的主动性,使每个学生在探讨交流中都有收获. 激发兴趣,活跃氛围,巩固知识,学中玩,玩中学. 返程途中解决难题返程路上解疑问 参观完纪念馆后大家乘校车返回学校,校车以50千米/小时的速度行驶,计划t小时后回到学校,现因道路通畅,校车的速度增加v千米/小时,那么回到学校需多少时间? 【师】:指导学生分析题目。 【生】:解决问题.聆听别人的思维,形成自己的经验。 首尾呼应,整个旅程有始有终.进一步突出学习代数式的目的:解决实际问题. 你说我说清点收获 你说我讲共交流 今天老师和同学们一起共同游览了鲁迅纪念馆,一路下来收获不小吧!说说你的感受,让大家一起来分享,怎么样?…… 1、代数式的概念 2、列代数式的要求 3、代数式的应用 请你把自己的感受和体会写进今天的数学日记中去. 【生】:交流感受,体会收获 【师】:根据学生的交流作适当归纳,并对学生自主探索、合作交流等学习过程作多元评价。 学生谈感受,教师作补充,培养学生的数学语言表达能力和自我整理的学习习惯. 4、课后拓展 课后延伸促提高 1、阅读课本P90-92内容. 2、做课本P92的作业题和作业本作业(A、B组题必做,C组题选做) 3、收集并整理生活中用代数式表示数量关系的例子,并在组内交流. 课内引申到课外,使不同的人在数学上得到不同的发展. 5、设计说明: (一)指导思想: 1、以落实课程标准为终极目标;以学生知识技能的形成、数学思维的完善和情感态度的发展为出发点;以多媒体课件为辅助教学手段;以教师的组织、引导、参与为依托;以学生的积极动脑、动口为主线来构建本课时的教学模式,促进学生的有效学习活动. 2、以数学来源于生活,又服务于生活为原则设计整节课. 3、突出新知识必须在学生自主探索,交流合作的基础上让学生自己去发现和归纳. (二)主要理念: 1、重视情景创设,注重知识从现实中来到现实中去的原则. 1、 突出数学学习内容的的现实性、有价值性和富有挑战性. 2、 注重数学与英语、信息技术等课程的整合. 3、 关注学生学习的过程,进行多元评价. (三)设计思路: 1、以贯彻新课程理念为前提,从学生的认知特点出发,通过创设情境,以参观鲁迅纪念馆为主线,把整节课串联起来,让学生从始至终都置身于参观游玩之中,却又紧紧围绕学习,仿佛玩中学,学中玩,不知不觉中来学习新知识. 2、引导学生观察、类比、联想已有的知识经验,归纳、总结新的知识等一系列活动,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出不觉得意外,让学生跳一跳就可以摘得到桃子。 3、通过对"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,使学生对列代数式有更深入的体会,实现人人获得必需的数学. 4、设计游戏活动-砸金蛋,激发学生的积极性,让学生主动的参与知识的巩固、深化过程,引发内在的学习动力. 5、通过对开放性问题(如结合生活经验列举代数式)、自主探究题、拓展创新题(如金蛋中的题目)等的设计,实现"不同的人在数学上得到不同的发展".

平方根课件 平方根课件PPT免费的介绍,今天就讲到这里吧,感谢你花时间阅读本篇文章,更多关于平方根课件 平方根课件PPT免费的相关知识,我们还会随时更新,敬请收藏本站。